An Evaluation of Satellite-Derived Atmospheric Motion Vector (AMV) Characteristics Using TCI HDSS Dropsondes

Brian McNoldy¹, Chris Velden², Sharan Majumdar¹

¹ University of Miami

² University of Wisconsin - Madison

TCI AMV/Dropsonde Comparisons

- Project motivation: How good are AMVs in defining TC outflow, and can a mix of high-resolution dropsondes with the AMVs better define the 4-D structure evolution?
- First step: Characterize the AMVs by comparing to co-located (space and time) HDSS dropsonde wind profiles
 - Evaluate the accuracies and height assignments
- Utilize 8 TCI flights over Hurricanes Joaquin & Patricia in Oct 2015 and hourly AMV datasets produced by UW-CIMSS from GOES-East
- AMV selection:
 - Within 30 minutes of dropsonde
 - Within ¼° of dropsonde (accounting for drift)
 - Quality Indicator (QI) \geq 0.8

 For uniformity with AMV heights, dropsonde data are averaged into 12.5-hPa vertical bins, from 50 hPa to 1000 hPa

Example of Verifying AMV Selection

Upper-level AMVs in cool colors

Lower-level AMVs in warm colors

Qualifying radius around dropsonde circled (blue: top, red: bottom)

Joaquin

- 4 flights spanning 2 Oct - 5 Oct, 2015
 329 total dropsondes
- 134 total verifying AMVs

Dropsonde wind speed observations at 150 hPa: TCI04, TCI05, TCI06, TCI07

Joaquin: Vertical Distribution of AMVs

- After applying search criteria, 134 total verifying AMVs remain
- Primarily in 150-350 hPa levels, but some in 700-900 hPa levels
- AMV processing has an upper bound on height assignments at 150 hPa and a lower bound at 950 hPa
- Mid-level AMVs (400-700 hPa) are QC'd out based on Sears & Velden (2012)

Joaquin: Horiz/Vert Coverage of Observations

Vertical cross-section of AMV Locations relative to storm center (top: all AMVs, bottom: verifying AMVs)

Plan view of dropsonde locations relative to storm center

Joaquin: Wind Speed Comparisons

Wind speed differences (AMV minus dropsonde) for all 134 verifying AMVs [Individual differences in red dots, layer average difference in blue dots]

- Speed bias 0.1 m/s <500hPa: -0.4 m/s >500hPa: 1.3 m/s

- *Mean vector difference* 5.2 m/s <500hPa: 6.2 m/s >500hPa: 3.0 m/s
- Standard deviation
 4.2 m/s
- Vector root-mean-square error
 6.7 m/s

AMV-Sonde Wind Speed for Joaquin

Joaquin: Wind Direction Comparisons

Wind direction differences (AMV minus dropsonde) for all 134 verifying AMVs [Individual differences in red dots, layer average difference in blue dots]

- Direction bias (incl 3 outliers) 17.2 ° <500hPa: 18.4 ° >500hPa: 14.2 °

Joaquin: AMV Level of Best Fit (LBF)

For each verifying AMV, search the matching sonde wind profile for the level that minimizes the AMV-Sonde vector difference, within 100 hPa of original AMV height assignment (i.e., the height assignment an AMV could be given to most closely match the dropsonde).

Negative values: AMVs assigned too high in atmosphere, Positive values: AMVs assigned too low in atmosphere

Joaquin: Spatial LBF and Speed Comparisons

Patricia

4 flights spanning 20 Oct - 23 Oct, 2015
257 total dropsondes 84 total verifying AMVs

Patricia: Vertical Distribution of AMVs

- After applying search criteria, 84 total verifying AMVs remain
- Entirely in upper levels, none in midlow levels (TCI flight legs were over storm's cirrus canopy)
- AMV processing has an upper bound for height assignments at 150 hPa and a lower bound at 950 hPa
- Mid-level AMVs (400-700 hPa) are QC'd out based on Sears & Velden (2012)

Patricia: Horiz/Vert Coverage of Observations

Vertical cross-section of AMV Locations relative to storm center (top: all AMVs, bottom: verifying AMVs)

Plan view of dropsonde locations relative to storm center

Patricia: Wind Speed Comparisons

Wind speed differences (AMV minus dropsonde) for all 84 verifying AMVs [Individual differences in red dots, layer average difference in blue dots]

- Speed bias -3.2 m/s <500hPa: -3.0 m/s >500hPa: N/A

- *Mean vector difference* 11.3 m/s <500hPa: 11.3 m/s >500hPa: N/A
- Standard deviation
 10.4 m/s
- Vector root-mean-square error 15.3 m/s

AMV-Sonde Wind Speed for Patricia-Atl 100 200 300 400 Pressure (hPa) Suspect due to 500 height assignment cap 600 700 800 900 1000 -20 -10 10 20 Ω Difference (m/s) $BIAS_{all} = -3.20$ $BIAS_{upper} = -3.20$ $BIAS_{lower} = 0.00$ $N_{sonde} = 257$ $N_{amv} = 84$ $MVD_{all} = 11.29$ VSD=10.38 $\frac{\text{MVD}_{\text{upper}}^{\text{an}}=11.29}{\text{MVD}_{\text{lower}}=0.00}$ VRMS=15.34

Patricia: Wind Direction Comparisons

Wind direction differences (AMV minus dropsonde) for all 84 verifying AMVs [Individual differences in red dots, layer average difference in blue dots]

- Direction bias 63.0 ° <500hPa: 63.0 ° >500hPa: N/A

AMV-Sonde Wind Direction for Patricia-Atl 100 200 300 400 Pressure (hPa) Suspect due to height 500 assignment cap 600 700 800 900 1000 30 60 90 120 150 180 Difference (deg) $\begin{array}{l} \text{BIAS}_{\text{all}} = 63.01 \\ \text{BIAS}_{\text{upper}} = 63.01 \\ \text{BIAS}_{\text{lower}} = 0.00 \end{array}$ $N_{sonde} = 257$ $N_{amv} = 84$ $MVD_{all} = 11.29$ VSD=10.38 $\frac{\text{MVD}_{\text{upper}}^{\text{an}}=11.29}{\text{MVD}_{\text{lower}}=0.00}$ VRMS=15.34

Patricia: Level of Best Fit (LBF)

For each verifying AMV, search the matching sonde wind profile for the level that minimizes the AMV-Sonde vector difference, within 100 hPa of original AMV height assignment (i.e., the height assignment an AMV could be given to most closely match the dropsonde).

Negative values: AMVs assigned too high in atmosphere, Positive values: AMVs assigned too low in atmosphere

Height Assignment Deviation from Level of Best Fit: Patricia-Atl

Patricia: Spatial LBF and Speed Comparisons

Summary

Project motivation: How good are AMVs in defining TC outflow, and can a mix of high-resolution dropsondes with the AMVs better define the 4-D structure evolution?

First step: Characterize the AMVs by comparing to co-located (space and time) HDSS dropsonde wind profiles

Evaluate the accuracies and height assignments

Preliminary Findings

 Complements the work of Sears and Velden (2012), but with TCI's unique dataset of high-altitude dropsondes over tropical cyclones

- The large number/density of HDSS dropsondes allows for strict matching criteria to be applied to the AMV comparisons

- Within 30 min, $\frac{1}{4}^{\circ}$, and QI ≥ 0.8

- Generally, matching statistics show good agreement between AMVs and collocated dropsonde winds, with some exceptions:

1) Tropopause bulge over strong TCs such as with Joaquin and Patricia's inner core CDO results in many AMVs being height assigned too low (150 hPa AMVs were best fit at ~80 hPa). The AMV processing cap at 150 hPa for height assignments is too restrictive in TCs

2) Low-level AMVs in the TC outer circulation/near-environment are sometimes height assigned too high (consequence of sloping TC MBL?)

Future Work

23

- AMVs appear to be more representative of the wind over a tropospheric layer rather than a specific level (Velden and Bedka, 2005). Does this apply in TC environments such as the outflow layer as well? Investigate layer-wind binning methods

- Explore 4D visualization of the AMV field with the dropsondes to better view the characteristics of the combined datasets