Ensemble-based diagnostics of tropical cyclone outflow

PI: Sharan Majumdar (University of Miami) Local Research Team: Brian McNoldy, Yi Dai Collaborators: Chris Velden (CIMSS / U. Wisconsin) Jim Doyle, Will Komaromi et al. (NRL)

TCI Science Meeting, October 18, 2016

Hypotheses in Original Proposal

The predictability of the outflow (and thereby TC structure) is largely modulated by the environment.

- Development of outflow channels is sensitive to small perturbations in the mid-latitude jet
- Relative phase between TC and environmental features is critical in the establishment of outflow channels
- Modifications to outflow structure influence both TC structure and environmental features
- Perturbations to outflow and environment are crucial to create diversity in ensemble perturbations

Research Group Efforts

- Ensemble-based guidance in TCI field campaigns (Majumdar)
- Ensemble diagnostics (Majumdar and NRL)
- Use TCI observations to inform of outflow layer wind profiles (McNoldy and CIMSS)
- Perturbation and sensitivity studies (Dai)

Gray: ECMWF 72-hour DETERM streamlines of 700-850 hPa ave wind. Init. 2015092900, Valid 2015100200. Color: ENSEMBLE 700-850 hPa area-avg rel. vort. 50 members. Black: DETERM.

Gray: ECMWF 84-hour DETERM streamlines of 700-850 hPa ave wind. Init. 2015092900, Valid 2015100212. Color: ENSEMBLE 700-850 hPa area-avg rel. vort. 50 members. Black: DETERM.

Gray: ECMWF 96-hour DETERM streamlines of 700-850 hPa ave wind. Init. 2015092900, Valid 2015100300. Color: ENSEMBLE 700-850 hPa area-avg rel. vort. 50 members. Black: DETERM.

Gray: ECMWF 108-hour DETERM streamlines of 700-850 hPa ave wind. Init. 2015092900, Valid 2015100312. Color: ENSEMBLE 700-850 hPa area-avg rel. vort. 50 members. Black: DETERM.

Gray: ECMWF 120-hour DETERM streamlines of 700-850 hPa ave wind. Init. 2015092900, Valid 2015100400. Color: ENSEMBLE 700-850 hPa area-avg rel. vort. 50 members. Black: DETERM.

Outflow

- Sep 29th and 30th: strong outflow channel towards S/SW prior to RI
- Oct 1st: outflow becomes more oriented towards SE
- Oct 2nd: interaction with upstream trough establishes northward component, just before 2nd intensification

ECMWF Data

- Fields on 1 x 1 grid
 - 51 ensemble forecasts
 - High-resolution (deterministic) forecast
 - ECMWF analysis (used as verification)

Crude Computation of 100-300 hPa Outflow

For the 1st intensification: Is outflow correlated with intensity and latitude?

51-member ECMWF ensemble 00-hour forecast. Init. 2015092900, Valid 2015092900.

51-member ECMWF ensemble 36-hour forecast. Init. 2015092900, Valid 2015093012.

For the 2nd intensification: Is the NW quadrant of outflow correlated with high lower-tropospheric circulation?

51-member ECMWF ensemble 00-hour forecast. Init. 2015100100, Valid 2015100100.

51-member ECMWF ensemble 12-hour forecast. Init. 2015100100, Valid 2015100112.

51-member ECMWF ensemble 24-hour forecast. Init. 2015100100, Valid 2015100200.

51-member ECMWF ensemble 36-hour forecast. Init. 2015100100, Valid 2015100212.

51-member ECMWF ensemble 48-hour forecast. Init. 2015100100, Valid 2015100300.

51-member ECMWF ensemble 60-hour forecast. Init. 2015100100, Valid 2015100312.

51-member ECMWF ensemble 72-hour forecast. Init. 2015100100, Valid 2015100400.

Correlation coefficient between NW Quadrant outflow and 700-850 hPa Circulation

CORRELATION COEFFICIENT

Correlation coefficient between outflow and 700-850 hPa Circulation, init. 2015093000

Correlation coefficient between outflow and 700-850 hPa Circulation, init. 2015100100 1 NW Quadrant **Correlation** is 2nd **NE Quadrant** 0.9 SE Quadrant largest for NW SW Quadrant 0.8 quadrant, Int compared with 0.7 CORRELATION COEFFICIENT other 0.6 quadrants. 0.5 0.4 0.3 0.2 0.1 0 12 0 24 36 48 60 72 84 96 108 120

FORECAST TIME

Preliminary Conclusions

- Predictability of initial track and RI is largely dependent on vortex structure
 - Deeper vortex <-> Lower latitude <-> Stronger southward outflow <-> RI
- Predictability of 2nd intensification phase is associated with interaction with upstream trough

– Outflow in NW quadrant <-> Intensifying hurricane

 Error characteristics: ensemble members often too weak, though comparisons between members can yield insights

Future Work

- Investigate causality: does outflow play an active role?
 - Is the 2nd intensification governed by the trough's modification of the outflow, which in turn modifies the intensity?
- Improve quantification of outflow
- Diagnose ensemble members and clusters
- Expand to large sample of TCs (e.g. Matthew)
- Examine using COAMPS-TC

Diagnosing forecast uncertainty associated with Hurricane Joaquin (2015) using the COAMPS-TC EPS

Will Komaromi, Jim Doyle, Alex Reinecke, Jon Moskaitis Naval Research Lab - Monterey will.komaromi@nrlmry.navy.mil

> *TCI Science Meeting 18 October 2016*

Hurricane Joaquin forecasts: 2015-09-28 12Z

- *Most* ensemble members *incorrectly* predict due westward and/or NW track, consistent with global models and NHC forecast
- Two members *correctly* predict slow SW track over Bahamas as major hurricane in consecutive forecasts

Hurricane Joaquin forecasts: 2015-09-30 00Z

48N

45N

11L Tracks from 0000 UTC 30 SEP 2015

Hypotheses and preliminary findings

- Two forecast periods for Hurricane Joaquin (2015) associated with particularly high uncertainty
- 1st period: most ensemble members incorrectly predict due westward and/or NW track, consistent with global models and NHC forecast
- Two members correctly predict slow SW track over Bahamas as major hurricane in consecutive forecasts
 - Preliminary results suggest subtle differences in steering flow between different ensemble "clusters"
- 2nd period: most members incorrectly make landfall along U.S. East Coast and fail to capture 2nd period of intensification associated with trough interaction
 - Hypothesis: insufficient ensemble spread during trough interaction fails to capture re-intensification and correct TC motion
- Currently in the process of further analyzing both of these periods