Tropopause Variations in Tropical Cyclones: TCI Observations and Modeling

Patrick Duran and John Molinari University at Albany, SUNY

> TCI Workshop Boulder, CO October 18, 2016

State University of New York

Research Summary

- We will analyze only the *inner-core tropopause variability* in Hurricane Patricia between October 21 and 23.
- Interpolate all soundings in the *high-density transects* to a uniform grid with 100-m vertical grid spacing.
- Focus on the *static stability evolution* near the cold point tropopause and what might cause it.
- Take a preliminary look at tropopause variability in *idealized simulations* using CM1.

21 October 22 October 23 October

Preliminary Simulations of Tropopause Variability

- CM1 version 18 in axisymmetric configuration
- 1 km horizontal, 250 m vertical grid spacing
- 0-6000 km radius, 0-25 km height
- Rotunno-Emanuel (1987) initial sounding
- Rotunno-Emanuel (1987) initial vortex
- SST fixed at 28°C
- Thompson Microphysics
- NASA-Goddard Radiation

For now, we will examine 24-hour averages of Brunt-Väisälä frequency squared and tropopause height.

N² (10⁻⁴ s⁻²) and Cold Point Height (yellow) Day 1

 N^{2} (10⁻⁴ s⁻²) and Cold Point Height (yellow) Day 2

 N^{2} (10⁻⁴ s⁻²) and Cold Point Height (yellow) Day 3

 $N^2 \, (10^{\text{-4}} \, \text{s}^{\text{-2}})$ and Cold Point Height (yellow) Day 4

 $N^2 \, (10^{\text{-4}} \, \text{s}^{\text{-2}})$ and Cold Point Height (yellow) Day 5

Summary and Future Work

- A strong tropopause inversion layer (TIL) existed over Patricia prior to its RI period.
- During RI, the *TIL over Patricia's eye eroded completely*.
 - This led to a rise in the tropopause height, accompanied by warming at the tropopause.
 - Early in Patricia's RI, the potential temperature evolution near the tropopause is consistent with *strong mixing*.
 - Later in the period, dramatic upper-tropospheric warming within the eye probably due to *subsidence from the stratosphere* – further decreased the static stability.
- An axisymmetric CM1 simulation depicted a similar inner-core tropopause evolution.
 - Potential temperature budgets and static stability tendencies will be used to determine what led to this evolution in the simulated storm.