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e Onboard NOAA P-3 aircraft

 Measurements of BC mass in single
particles by laser incandescence
independent of mixing state and
morphology (~90 — 550 nm)

 Measurements of optical size of BC-
containing particles (~200 — 400 nm)

 BC data products:

v' mass mixing ratio, ng kg (archived)

v' STD & AMB mass loadings, ug m-3 (archived)
v’ coating state and thickness

\
NOAA P-3 integration, Tampa, FL

Schwargz, J. P. et al., GRL, 2008; Gao, R.S. et al., AS&T, 2007 5
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RESULTS — SENEX BC OVERVIEW
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RESULTS — BC Vertical Profiles
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RESULTS - Impact of power plants on BC C/I/RAES
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RESULTS - power plant emissions of BC
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Power plants are not a significant source of BC — opportunity to
perform a “lab test” in the field

NOy data from I. B. Pollack, T. B. Ryerson et al. ; CO and SO, data from J. Holloway et al. 10




RESULTS — power plant AGING of BC T
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The fraction of BC particles that can be identified as coated increases in power plant
plumes by sulfate condensation/coagulation and subsequent chemistry

NMASS data from C. A. Brock, N. L. Wagner et al. ; AMS data from J. Liao, A. M. Middlebrook et al. 11




N RESULTS — Power Plant AGING of BC A
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RESULTS — Power Plant AGING of BC
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RESULTS — Power Plant AGING of BC
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* Shale exploration regions are NOT a significant source of BC

* Urban/industrial areas are major sources of BC in the SE USA
- St. Louis more than Atlanta

* Power plants are NOT a significant source of BC in the SE USA, but
affect BC mixing state and aging:
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* Shale exploration regions are NOT a significant source of BC

* Urban/industrial areas are major sources of BC in the SE USA
- St. Louis more than Atlanta

* Power plants are NOT a significant source of BC in the SE USA, but
affect BC mixing state and aging:

with aging of a PP plume:
Fraction of BC that can be identified as coated increases
Coating thickness of BC particles increases

...from condensation/coagulation of sulfate and consequent chemistry
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FUTURE WORK

Investigate plumes from other power plants
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Study the differences in aging rates between plumes as a function of:

« AMS
composition (sulfate, nitrate etc.)
organic factors (LV-OOA, SV-O0A, HOA)

* NMASS
NON-BC fine particle number
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FUTURE WORK

Investigate plumes from other power plants

CIRES

Study the differences in aging rates between plumes as a function of:
« AMS
composition (sulfate, nitrate etc.)

organic factors (LV-OOA, SV-O0A, HOA)

* NMASS
NON-BC fine particle number

Examine the:
e Aerosol EXTINCTION measurements
* CCN Activity measurements

MODEL/CALCULATE PP AGING IMPACTS ON BC LIFETIME & RADIATIVE PROPERTIES

20
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