Characterization of Organic Aerosol Measured at the Centerville Ground Site by the Volatility and Polarity Separator (VAPS) during SOAS

> Raul Martinez, David Hagan, Yaping Zhang, Brent Williams Washington University in St. Louis

> > AMS Data Contributions from Lu Xu, Sally Ng, Georgia Tech

Motivation

- Much uncertainty exists in the formation and evolution of OA
- Need for chemical insights on anthropogenically influenced biogenic SOA
- Need new manageable parameterizations of this chemistry

Located at Centerville Ground Site

Trailer 10

The Volatility & Polarity Separator (VAPS)

Mode 1: Volatility & Polarity Separation

Mode 1: Volatility & Polarity Separation

OA Evolution & 2D Representation

Illustration of SOA evolution through 2D-VBS space

Jimenez et al., Science, 2009

Ambient VAPS sample from St. Louis, MO.

Present are alkanes, moncarboxylic acids, <u>dicarboxylic acids</u>, ketones, aldehydes, PAHs, oxy-PAHs, phthalates, and fatty acid methyl esters.

Ambient VAPS sample from St. Louis, MO.

> 250C

Volatility

SOAS Sample

Sample Date: 06/17/13

Sample Time: 9:09am – 9:39am

Ambient VAPS sample from St. Louis, MO.

Washington University in St.Louis

Polarity

Mode 2: Fast'er' GC

Mode 2: Fast'er' GC

VAPS Fast'er' GC Chromatogram

Abundance

VAPS Fast'er' GC Chromatogram

PMF on Binned Chromatogram

Zhang et al, AS&T, submitted

PMF – Hi Res – 12 Factors

PMF – Hi Res – 12 Factors

Correlation with AMS Factors

AMS PMF Factors

	IEPOX	LVOOA	SVOOA	BBOA
air + decomp	-	-	-	-
decomp + organosulfate	-	-	-	-
carboxylic acids	0.64	0.85	0.86	0.85
ketones	-	0.72	0.92	0.82
biogenics 2	-	0.78	0.91	0.82
other carbonyls	-	0.80	0.65	0.81
ΙΕΡΟΧ ΟΑ	0.62	0.80	0.90	0.86
organonitrates	-	-	0.91	0.74
alkanes	_	-	-	_
biogenics 1	_	0.75	0.90	0.84
lower volatility oxidized UCM	_	0.70	0.93	0.84

AMS Factors from Lu Xu, Sally Ng, Georgia Tech

VAPS PMF Factors

other approach to interpreting data

Collection Time: 6:45 – 7:15am

17

Collection Time: 7:30 – 8:00am

17

Collection Time: 8:15 – 8:45am

Collection Time: 9:45 – 10:15am

Collection Time: 10:30 – 11:00am

Collection Time: 11:15 – 11:45am

17

Collection Time: 12:00 - 12:30pm

Conclusions

- Deployed new instrument offering unique way of measuring organic aerosol
- PMF Factors have good correlation with AMS PMF Factors offering additional chemical identification

Future Work

- Laboratory study of standards and PAM oxidation
- Identify and integrate compounds and obtain time series
- Refine PMF and look for correlations with other measurements