The detection and identification of extremely low-volatilty organic species during SOAS and FIXCITCIT using an NO₃⁻-CIMS

Jordan Krechmer¹; Manjula R. Canagaratna²; Paola Massoli²; Harald Stark^{1,2}; John Nowak²; Joel Kimmel ^{2,3}; Heikki Junninen ⁴; Richard Knochenmuss ³; Michael Cubison³; Andrew.T. Lambe ², John T. Jayne ²; Jose L. Jimenez¹; Douglas R. Worsnop²

FIXCIT Team:

Tran Nguyen; John Crounse; Jason St. Clair; Alex Teng Xuan Zhang; Rebecca Schwantes; Matt Coggon; Kelvin Bates; John Seinfeld; Paul Wennberg

I. University of Colorado at Boulder 2. Aerodyne Research Inc,. 3. Tofwerk, AG,4. University of Helsinki, Helsinki

Motivation: Extremely Low Volatility Organic Compounds (ELVOCs) are important for new particle growth in a-Pinene dominated environments

From: Ehn, M. et al. A large source of low-volatility secondary organic aerosol. *Nature* **506**, 476–479 (2014). ₂

METHOD: Detection of Oxidized Organics in the gas

phase via Chemical Ionization Mass Spectrometry (CIMS)

- Selective method via specific ionization schemes
- Molecular identification via high resolution mass spectrometry

Nitrate Ion (NO₃⁻) Ionization Scheme for Oxidized Organic Molecules

X-rays $(n + 1)HNO_3 \rightarrow (HNO_3)_nNO_3^- + H^+$

Sensitivity = ppt levels (low background, high S/N)

Calibration = obtained for H_2SO_4 based on inlet geometry (flows) (*Mauldin et al., JGR, 1999; Jokinen et al., ACP, 2012*)

4

IMS-TOF

C₅ compounds observed

SOAS

 $\succ \alpha$ -pinene products (C₁₀, C₂₀)

- O/C = 0.8 - 1

- Night time peak (O₃) except for $C_{10}H_{15}NO_8$ (NO₃⁻), observed during the day (O₃ and OH) as in Hyytiala (role for NPF and growth)

(Massoli, AGU 2013)

7

α-pinene lons observed during SOAS match ions generated in chamber and flow reactor experiments

Isoprene ELVOCs correlate w/ OA growth and formation in **FIXCIT** chamber PMF Factors (NO₃⁻CIMS) First generation — Late Generation Products **OA-forming Oxidized Products** 0.5 Caltech AMS: Organic lon Count Rate (cps) 1000 1000 1000 1000 loading 9-00 PM 6-00 PM 12:00 AM 1/17/2014 1/18/2014 10 Time (UTC)

NOx conditions

11

SOAS 2013: IMS-TOF Spectra

Lab and field IMS measurements for αpinene-O3 monomers agree well

Initial Conclusions & Future Work

- We see isoprene and α-pinene ELVOCs throughout SOAS
- We can produce ELVOCs in chamber and laboratory
- Isoprene ELVOCs correlate with aerosol growth in lab experiments

- Quantitation of Isoprene ELVOCs
- Confirm molecular assignments (with IMS)
- Finalizing Isoprene peak list
- Application to SOAS organic aerosol growth: Is condensation of isoprene ELVOCs atmospherically relevant?

Thanks for your attention!

OSc vs C# and map isoprene, apinene, and organonitrate

Many of these oxidized organics condense on $(NH_4)_2SO_4$ seed

From Isoprene OH oxidation:

1 ITAFI I

Isoprene ELVOCs are produced rapidly Ammonium sulfate is injected into the chamber ELVOC concentration declines and organic aerosol increases

FIXCIT

Ambient *a*-pinene trend lines

Ion Mobilities of Ehn et al. monomer lons

Different ion series clearly separated according to drift times Similar slopes indicate that species have similar chemical functionalities across@ll ion series

All *a*-pinene peaks from Mikael

Ion mobilities measured for Dimers