CHEMICAL CLIMATOLOGY IN THE SE US: 1999-2012

G. Hidy, C. Blanchard, K. Baumann, E. Edgerton, S. Tanenbaum, S. Shaw, E. Knipping, I. Tombach, J. Jansen, and J. Walters

> SAS-SOAS WORKSHOP MAR 31 - APR 2, 2014

Why is Chemical Climatology a Concern?

- Establish a long-term context for 2013 campaigns
 - -Recognize the changing chemical environment of region and rur -Reinforce relationship with pre-2012 research and expectations for experimental
- Framework for interpretation of campaign results and their generalization
 - -Document the representativeness of aerometric conditions for SAS-SOAS campaigns -Relate or "integrate" contemporary hypotheses of photochemistry and airborne particles with basic regional and local field observations

Elements of Chemical Climatology

- Overall development of the Southeast and its climatology •Trends in emissions
- Meteorological features of importance -T, RH, SR, WS, WD; summer synoptic conditions
- •Comparison of trends in ambient concentrations for gases and particles -Gases-SO2, NOy, NH3, NMOC, especially isoprene
 - -Particles—mass, composition, especially SO4, NH4, OC, EC
- Considerations for chemical indicators relevant to SOAS objectives -Reaction products-O3, SO4, NOz, SOC; OH-RO2...

Southeastern Chemical Climatology, 1999-2012

- Basic measurements of urban and rural contrasts in a large SE region from the Gulf of Mexico to the north central Alabama and Georgia
- Complements presentations of carbon (Blanchard). Representativeness (Baumann) , SOC constraints and consistencies (Shaw), and Summer 2013 carbon including isotopes (Edgerton)
- Provides a framework for interpreting SAS-SOAS data in the light of changing chemical environment in the SE and long-term annual and seasonal averages since 1999.

Southeastern Chemical Climatology -Approach and Summary

- •Organized in sequence of emissions to indicators of ambient chemistry
- •Annual anthropogenic emissions show changes in "forcing" of chemistry in a subtropical continental setting
- •Ambient chemistry regionally and locally affected by meteorology, especially thermodynamic properties and air mass mixing and transport
- Indicators of photochemistry, including O3 and precursors, aerosol composition show a mix of variation and systematic changes consistent with "general" expectations, but unresolved questions raised in details of trends.

Emissions and Meteorology

- -Annual anthropogenic emissions declined from 1999-2012 -Summer diurnal emission patterns for regional EGUs and t

- -Summer T, RH, SR, WS and WD tre previous years
- -Vertical mixing associated with diurnal changes morning breakup coincides with 6

Decreasing Anthropogenic Emissions in

Ambient Concentration Trends

Annual concentration trends for chemicals of primary origin decline with emissions for both urban sites and rural sites

- -NMOC in Atlanta area generally follows motor vehicle emission reductions, but groups of species show variable trends
- -Isoprene trend appears to "modestly" increase over 2000-2012 • Secondary products show downward concentration trends dependent on reactant
- reductions, but have tended to level out since about 2007
- -Sulfate tracks ambient SO2, but levels relative to emissions after 2007 -Ozone shows a consistent less than 1:1 proportionality with both VOC and NO

NMOC Species Trends

Midday Rural NMOC Species History (ppbvC) Show anthropo- presence, but strong isoprene influence

Species Group	West AL (1990)	Oak Grove, MS (1994)	CTR, AL (1994)	YRK, GA (1994)	YRK, GA (2002)	YRK ,GA (2012)
C2-C4		9.81	8.3	8.95	3.9	5.5
Pentanes	0.7	25.7	7.42	12.1	1.3	1.2
BTEX	0.2	5.57	2.34	8.5	0.75	0.60
Isoprene	5.6	11.2	21.1	9.80	7.5	6.5
Pinenes	0.3	5.8	3.0	2.2		-

Light Extinction and Water Content CTR bext(Dry+H₂0) -- Annual Avg

> b H2O — ь см

b Soil

В ОМ

->- RH

b AmSulf

100

60

20

http://www.hpc.ncep.noaa.gov/da Changes in NMOC

NOAA Daily Weather Map July 21, 2004

oncentration trends different for groups of spe tlanta (3 sites) and YRK (upwind) examples -Groups—C2-C4; pentanes; BTEX; and isoprene an C2-C4 decline but pentanes mixed; iso

Tempered by meteorology and reactivity, especially isoprene

Co-Variation of EC and OC Trends

- -At equilibrium, condensed water in particles depends on relative humidity; equilibration occurs such that more water is in particles at night than during the day

Presence of Water in Aerosols

•There is sufficient water available for heterogeneous chemical reaction

- Application of Empirical Orthogonal (factor) Analysis adds insight into ave soatial distributions relative to emissions
- Major spatial factors differ for different species
- Major EOF factor for inland sites is strongly coupled with temperature change transport distance

Spatial Variation of Pollutants

Urban-Rural Contrasts

2005 2006 2007 2008 2009 2010 2011 2012

So What to Look for?

- What are the implications of the continued declines of reactants and products of photochemical processes?
- •How do the long-term annual or seasonal averages inform the details of chemistry leading to oxidants and SOC in the southeastern environment?
- Are there consistencies or inconsistencies in long-term measurements that constrain the importance of SOC formation mechanisms in the SE semitropical-continental rural or urban environments?

