Quantifying Mercury Emissions from Large Point Sources in the Southeastern U.S. during NOMADSS

J. L. Ambrose,¹ L. Gratz,¹ D. A. Jaffe,^{1,2} C. A. Cantrell,³ R. L. Mauldin III,³ T. Campos,⁴ F. Flocke,⁴ D. Knapp,⁴ and A. Weinheimer⁴

> ¹University of Washington, Bothell, WA ²University of Washington, Seattle, WA ³University of Colorado, Boulder, CO ⁴National Center for Atmospheric Research, Boulder, CO

Southeast Atmosphere Study Data Workshop

Boulder, CO

Jaffe Research Group University of Washington | Bothell

Acknowledgements

People

NOMADSS science team
NCAR Research Aviation Facility staff

Funding

Some data in this presentation are preliminary.

Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks

NOMADSS Hg science goals •Characterize emissions from large U.S. Hg point sources •coal-fired power plants generate 50% of U.S. anthropogenic emissions •Study regional scale Hg distribution and atmospheric chemistry

Aircraft Hg Measurements: Detector for Oxidized Hg Species (DOHGS)

Species measured
Total atmospheric Hg (THg)
Gaseous Elemental Mercury (GEM)
Reactive Mercury (RM) by difference
Time resolution: 2.5 min
Mean overall uncertainties
THg, GEM: 7–8%
RM: ~45 pg/m³
RM LOD (3σ): 110 pg/m³

Supporting Data

C-130 measurements* (technique, investigators)

- SO₂ (UV fluorescence, U. Colorado-Boulder)
 - 10 s data averaged to 2.5 min
- NO, NO₂ (chemiluminescence, NCAR CARI group)
- CO₂ (CRDS, NCAR CARI group)
 - •1 s data averaged to 10 s, 2.5 min
- **Emissions inventories (EPA)**
 - •EPA National Emissions Inventory (NEI)
 - •EPA Toxics Release Inventory (TRI)
 - •EPA Air Markets Program Database (AMPD)

Transport modeling

NOAA HYSPLIT dispersion model

Hg Point Source Analysis Protocol

Point Source Survey 1: RF-07 (Ohio River Valley)

Point Source Survey 1: RF-07 (Ohio River Valley)

Selected C-130 measurements (2.5 min)

Source Attribution Example: RF-07, Plume 1

Modeled emissions dispersion from nearby Fort Martin coal-fired power plant (Data sources: EPA TRI, NEI; http://www.ready.noaa.gov)

Source Attribution Example: RF-07, Plume 1 – continued

(a) Observed SO₂/CO₂ ER (plume 1) vs. (b) inventory EFs (Ft. Martin Plant)

Plume 1 SO₂/CO₂ ER matches real-time EF for Fort Martin Power Plant
 Ft. Martin was 2nd largest Hg point source in WV in 2012 (326 lbs)

Source Attribution for RF-07

Source Attribution for RF-07 – continued

Inventory Evaluation: Fort Martin Power Plant

(a) Cross-plume Hg and CO₂ obs. (2.5 min); (b) Fort Martin ER-EF comparison

•Hg/CO₂ ER is ~1/3rd of most recent inventory-based EF
•But, ER is ~60% higher than previous year's EF
•2013 Hg data are needed to better evaluate inventories

Inventory Evaluation: Fort Martin Power Plant – cont.

(a) Cross-plume Hg and CO₂ obs. (2.5 min); (b) Fort Martin ER-EF comparison

Results are consistent with those for first plume crossing
Plume 1 ER = 2.2 ± 0.6 ppqv/ppmv
Plume 2 ER = 2.4 ± 1.1 ppqv/ppmv

Source Attribution for RF-07 – continued

•Hatfield Plant was the largest Hg point source in PA in 2012 (530 lbs)

Inventory Evaluation: Hatfield's Ferry Power Plant

(a) Cross-plume Hg and CO₂ obs. (2.5 min); (b) Hatfield ER-EF comparison

•Hg/CO₂ ER is ~45 to 60% of most recent inventory-based EFs
•2013 Hg data are needed to better evaluate inventories

Point Source Survey 2: RF-08 (AL and Northeastern TX)

C-130 flight track during RF-08

•Numerous plumes observed

Selected C-130 measurements (2.5 min)

Source Attribution for RF-08

Selected C-130 measurements (2.5 min)

•Limestone Plant was 12th largest Hg point source in TX in 2012 (375 lbs)

Inventory Evaluation: Limestone Power Plant

(a) Cross-plume Hg and CO₂ obs. (2.5 min); (b) Limestone ER-EF comparison

•Hg/CO₂ ER is ~3-fold higher than most recent inventory-based EF
•But, ER is close to previous year's EF
•2013 Hg data are needed to better evaluate inventories

Source Attribution for RF-08 – *continued*

C-130 flight track during RF-08

Selected C-130 measurements (2.5 min)

Other Large Non-Power Plant Hg Point Sources

Conclusions

•Sampled numerous Hg-rich plumes in the Southeast during NOMADSS, many are traceable to large coal-fired power plants.

- •Developed a method to compare observed ERs with inventory EFs and applied this to several large coal fired power plants.
- •Preliminary evaluation indicates the actual Hg emissions may differ significantly from inventory values.
- •Will continue to evaluate Hg emission inventories for all sources that we sampled.
- •Will revise our analysis using 2013 Hg data when available.

THANK YOU

Extra Slides

Instrument Overview – Detector for Oxidized Hg Species

Schematic of the 'UW-DOHGS' as configured on board the C-130

Evaluation of RM Collection Efficiency

(a) Manifold/spiking system; (b) measured vs. expected manifold HgBr₂ concentrations

•HgBr₂ is used as a surrogate calibration standard for RM