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Outline:

1. Shale gas production increasing — need
top-down estimates of CH, leak rates

2. Southeast Nexus (SENEX) 2013 flights

to three of the largest shale gas plays

Quantification method: mass balance

4. CH, emissions from these regions
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Shale gas increasing in importance as source of natural gas
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Shale gas increasing in importance as source of natural gas

U.S. dry natural gas production
trillion cubic feet

o History ~40% in Projections
2012
30
25
20 , Shale gas
15 _
Non-associated offshore Tight gas
10
Coalbed methane
S Associated with oil
5 Non-associated onshore

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

Source: U.S. Energy Information Administration, Annual Energy Outlook 2013 Early Release



Shale Gas Production Minus Liquids
(billion cubic feet per day)
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evaluate bottom-up inventories for
these regions (EPA = 1% from all fields)
no published top-down estimates for
the CH, leak rate currently exist
specifically for these 3 shale plays



Shale Gas Production Minus Liquids
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Aircraft CH, measurements higher downwind of Haynesville shale

4  Two SENEX flights; both provide constraints for inverse modeling
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Aircraft CH, measurements higher downwind of Haynesville shale

i  Two SENEX flights; both provide constraints for inverse modeling
- 4 * One flight with constant wind field
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Aircraft CH, measurements higher downwind of Haynesville shale
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Two SENEX flights; both provide constraints for inverse modeling
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Aircraft CH, measurements higher downwind of Fayetteville shale

/  Two SENEX flights; both provide constraints for inverse modeling
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Aircraft CH, measurements higher downwind of Fayetteville shale

wh 4; * One with stable boundary layer
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Aircraft CH, measurements higher downwind of Fayetteville shale

’ /  Two SENEX flights; both provide constraints for inverse modeling

& I « One with stable boundary layer
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Aircraft CH, measurements around Marcellus shale affected by

upwind sources

1}' *  One SENEX flight
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Aircraft CH, measurements around Marcellus shale affected by
' upwind sources

* One SENEX flight
* Flight track encompasses 90% of wells in N.E. PA &

~70% of total PA shale gas production

CH,, ppbv
1880 1890 1900 1910+

1K/69) ‘s@ainos juiod "HO




Aircraft CH, measurements around Marcellus shale affected by

upwind sources

* One SENEX flight
* Flight track encompasses 90% of wells in N.E. PA &
~70% of total PA shale gas production
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Flux calculation method [White et al., Science, 1976]

Emission rate, and its uncertainty, calculated from:

net CH, flux = v e cos(a) e fozn(z) dz ffy X (y)dy

CH, emission rate = wind speed x air column density x CH, enhancement

» ideally, steady wind field and a well-mixed boundary layer (BL) — assumptions to verify



Flux calculation method [White et al., Science, 1976]

Emission rate, and its uncertainty, calculated from:

Z y
net CH, flux = v e cos(a) » [ 'n(z) dz f_y X (y)dy
CH, emission rate = wind speed x air column density x CH, enhancement

» ideally, steady wind field and a well-mixed boundary layer (BL) — assumptions to verify

works well for large point sources
[White et al., Ryerson et al.]



Flux calculation method [White et al., Science, 1976]

Emission rate, and its uncertainty, calculated from:

net CH, flux = v e cos(a) e fozn(z) dz ffy X (y)dy

CH, emission rate = wind speed x air column density x CH, enhancement

ideally, steady wind field and a well-mixed boundary layer (BL) — assumptions to verify

works well for large point sources

[White et al., Ryerson et al.]

applicable to area sources:

O, and aerosol production from
St. Louis, MO [White et al.]

NOy from Birmingham, AL [Trainer et al.]
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Flux calculation method [White et al., Science, 1976]

Emission rate, and its uncertainty, calculated from:

net CH, flux = v e cos(a) e fozn(z) dz ffy X (y)dy

CH, emission rate = wind speed x air column density x CH, enhancement

» ideally, steady wind field and a well-mixed boundary layer (BL) — assumptions to verify

works well for large point sources sess _ ' _ _ _ _
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Emission rates and uncertainties driven by downwind CH,
enhancements vs. upwind variability
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Emission rates and uncertainties driven by downwind CH,
enhancements vs. upwind variability

Enhancement downwind vs. upwind
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Emission rates and uncertainties driven by downwind CH,

® © P-3 track,

enhancements vs. upwind variability
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Emission rates and uncertainties driven by downwind CH,
enhancements vs. upwind variability
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CH, leak rate (percent)

Atmospheric measurements to quantify CH, leak rates from
regions of natural gas extraction
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CH, leak rate (percent)

Atmospheric measurements to quantify CH, leak rates from

regions of natural gas extraction
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Conclusions

NOAA P-3 flew to three of the largest shale gas

producing regions of the U.S. in June and July 2013
and determined maximum CH, emissions
attributable to oil and gas exploration

One-day natural gas leak rates from all three shale
plays are less than
3.2%, immediate net climate benefit for use as
power plant fuel vs. coal [Alvarez et al., 2012]

3.7%, net climate benefit in 20 yrs [/bid.]
8%, net climate benefit in 100 yrs [/bid.]
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