MINI-DOAS

Jochen Stutz
Max Spolaor

University of California Los Angeles
What is Mini-DOAS?

- Identify and quantify trace gases using their narrow band absorptions.
- Airborne remote sensing
- Slant Column Density (SCD) \[SCD = \int_0^s c(s) \, ds \]
How does Mini-DOAS work?

- Power consumption: 29VDC at 1.4A = 41W
- Size and Weight: 11.8x9.84x8.0 inches; 75 pounds including 9L ice-water
Spectrometers, Telescopes, and Quartz fibers... on NASA's Global Hawk.
DOAS

Differential Optical Absorption Spectroscopy

Identification and quantification of trace gases by their unique narrow band absorption in the open atmosphere
BrO and O4 data analysis

BrO fit range: 345 – 360nm

Species to be measured & DL:

- NO₂ 50 ppt
- HONO 20 ppt
- BrO 0.75 ppt
- HCHO 150 ppt
- SO₂ 200 ppt
- glyoxal: ?
- aerosol extinction (via O₄)

O4 fit range: 338-347nm 352-360nm
ATTREX Data Example

- Relative Radiance [counts/ms*scans]
- Altitude [10^5 m]
- BrO DSCD [10^14 molec./cm^2]
- O4 DSCD [10^3 molec./cm^2]

Universal Time [5th November 2011]
From SCDs to trace gas concentration

$$\text{SCD}(\text{El. Ang.}) = \sum \text{BAMF}(\text{El. Ang.}) \times c(h) \times dh$$

- BAMFs derived via radiative transfer calculations
- Optimal Estimation Inversion to derive concentration profile $c(h)$

Detector at 4km

Box Airmass Factor (DBAMF)

Altitude (km)

0 20 40 60 80 100

-90.0°
-45.0°
-30.0°
-4.0°
-3.0°
-2.5°
-2.0°
-1.5°
-1.0°
-0.5°
0.5°
1.0°
1.5°
2.0°
2.5°
3.0°
4.0°
5.0°
BrO vertical concentration profile retrieval

Science flight 2 on 11/05, 18:00 UTC

Retrieved BrO profile

Modeled SCDs fit well

BrO at flight altitude:

\(\sim (1.8 \pm 0.25) \times 10^7 \text{ molec/cm}^3 \)

\(= (5.0 \pm 0.75) \text{ ppt} \)
BrO vertical profiles

Science flight 2 on 11/05

Consecutively retrieved BrO profiles

BrO at flight altitude
Questions / Issues

- Telescope fairing (pressure seal).
 - Calibration of telescope geometry after installation
- Meeting NSF specs for instrument
 - Instrument has undergone environmental testing at NASA
- Fast information on pitch, roll, acceleration?
 - Addition of sensor to instrument of from aircraft?
- Data archive on C130 server (~5000 spectra each 10kbyte)?
- Change of measurement strategy depending on flight status
 - Profiling through elevation scanning vs limb during ascent/decent