Multi-scale Observational Analyses within the Marsupial Pouch of Pre-depression Tropical Disturbances

> Michael M. Bell and Michael T. Montgomery Naval Postgraduate School

Research funded by the National Science Foundation

Easterly WavesEasterly wave critical layerHydro instability of ITCZITCZSubtropical intrusionsInertia gravity waves2,000 - 8,000 km200 - 2,000 km

IVIESO-\gamma. VHTs, Congestus, Precip. Driven downdrafts, Gust fronts 2 - 20 km

- The cat's eye 'pouch' is a region of approximately closed circulation, where air is repeatedly moistened by deep moist convection and protected to some degree from dry air intrusion
- The parent wave is maintained and possibly enhanced by diabatically amplified
 Monescore and solution of the solution

Pre-Depressior Hagupit

 Two consecutive aircraft missions observed a developing low-level circulation (LLC) four days prior to the JTWC tropical cyclone formation alert Lau and Lau (1990)

Research Flight 00 UTC 15 Sept.

Research Flight 00 UTC 15 Sept.

Research Flight 00 UTC 15 Sept.

$$J(q) = \frac{1}{2}q^{T}q + \frac{1}{2}(\mathbf{H}\mathbf{C}q - d)^{T}\mathbf{R}^{-1}(\mathbf{H}\mathbf{C}q - d)$$
$$\nabla J(q) = (\mathbf{I} + \mathbf{C}^{T}\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H}\mathbf{C})q - \mathbf{C}^{T}\mathbf{H}^{T}\mathbf{R}^{-1}d$$
$$\mathbf{SAMURA} \mathbf{B} = \sqrt{\mathbf{B}}^{T}\sqrt{\mathbf{B}} = \mathbf{C}^{T}\mathbf{C} \qquad \stackrel{\mathsf{P}=\mathsf{Physical Coordinate Transform}}{\mathsf{S}=\mathsf{Cubic Spline Transform}}$$
$$q = \mathbf{C}^{-1}\delta x = \mathbf{C}^{-1}(x - x_{b}) \stackrel{\mathsf{D}=\mathsf{Diagonalized Background Error}}{\mathsf{F}=\mathsf{Recursive Gaussian Filter}}$$
$$\mathbf{C} = \mathbf{PSDF}$$

- Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation
- Can combine radar, dropsonde, flight level, and some satellite data
- Low noise via cubic interpolations and spectral derivatives (Ooyama 2002)
- Tunable error specifications and filtering (Ooyama 1987 2001; Purser et al. 1995) $q(r,z) = \{\rho rv, \psi, h, q'_v, \rho'_a\}$

SAMURAI Axisymmetric V_T, V_R& RH

Spline Analysis at Mesoscale utilizing Radar and Aircraft Instrumentation

Summary and Goals

- Build upon and compare with results from T-PARC/TCS-08 to test hypotheses of multi-scale interactions leading to tropical cyclogenesis – but increase the range, temporal sampling, and depth of dropsonde measurements using in the ATL
- Analyze G-V observations especially flight-level, dropsonde, MTP, and HCR (if available) -- in conjunction with NOAA P-3 and G-IV obs -especially dropsonde and Doppler radar -- and NASA DC-8 and GH data
- Use SAMURAI and other software tools to construct analysis composites from aircraft and satellite data sources