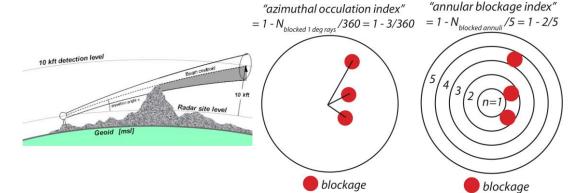


Mobile radar site characterization Conrad Ziegler, NSSL

grid appears compressed vertically

- NSSL has derived pre-selected mobile radar sites for nocturnal deployments. (Sites are also useful for PISAs & soundings.)
- Sites cover extended PECAN domain to facilitate possible longer missions if insufficient MCS, CI, or Bore cases nearer Hays & earlier in field phase
- Sites are rasterized to 15 km staggered grid with up to 5 sites/GP. GP coordinates (IX, JY, NRANK), where (IX, JY) is position and NRANK = rank-order (1-5). Plotted sites have NRANK = 1
- □ Some GPs have < 5 (or even 0) sites
- Extended siting for e.g., MCSs in eastern CO/NE & southeastern SD in June-July & up to 5 sites/GP yields ~12,600 total sites


Objective characteristics of ideal mobile radar sites

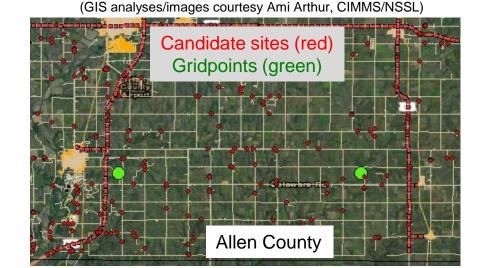
□ Road type (rating):

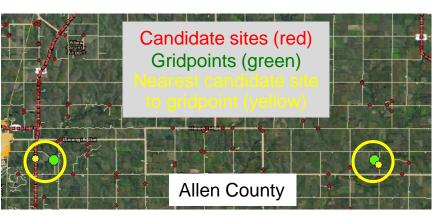
- Paved-paved intersection ("best")
- paved-unpaved intersection ("2nd-best")
- paved road shoulder ("3rd-best")

- □ Minimal low-level scan blockage:
 - azimuthal occultation ("best")
 - annular blockage ("2nd-best")

 Small radial distance to nearest gridpoint (but blockage and road type are much more important)

GIS site selection procedure


- □ Site selection is objectively handled using ArcView[™] software and GIS datasets
 - TIGER-2010 census road shapefiles
 - State DOTs paved-unpaved shapefiles
 - 1 arc-sec (~30 m) USGS National Elevation Dataset (NED)
 - 1 arc-sec (~30 m) USGS land use dataset (from which tree cover is extracted)
 - > 10 m tree height is added to NED elevation to calculate blockage with augmented hgts
- □ NSSL-authored ArcView plug-in Python scripts obtain candidate parking sites
 - select candidate sites from road database following objective characteristics
 - sites in/near population areas are rejected outright
 - sites with serious annular blockage are rejected outright
 - remaining candidates have azimuthal blockage computed from virtual 360 deg scans
 - hybrid virtual scan images are computed for all sites

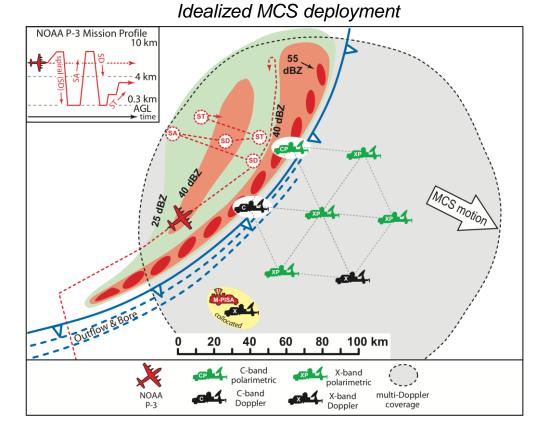


Candidate sites and gridpoints

- Look at Allen County KS from older example assuming a 20 km grid
- □ apply objective siting rules in ArcView:
 - spaced along paved S1100 or S1200 roads;
 - paved-paved or paved-unpaved intersections S1100/S1400, S1200/S1400, S1100/S1200
- Upper panel: shows candidate sites from ArcView (red) and gridpoints (green)
- Lower panel: same as upper panel but shows nearest candidate site to each gridpoint (yellow)

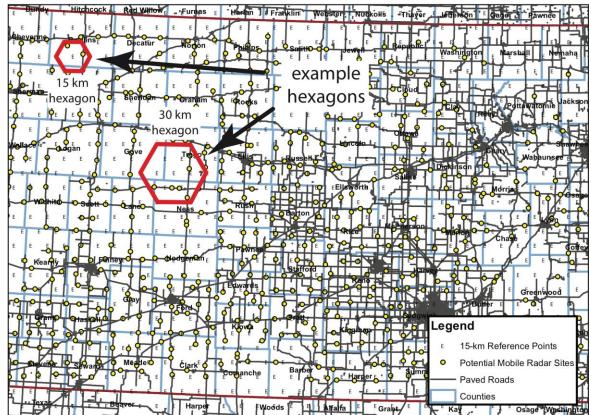
Ascii-formatted site listing dataset

Header includes number of sites at each rank and (NX,NY) dimensions of staggered grid
Data records (1/site) ordered from LL to UR of grid (all sites/GP) from SW (0,0) to NE (47,77)


	<mark>N2 N3</mark> 2681 2530	N4) 2372	<mark>N5</mark> 2211							
ΙJ	L WGT	RQI	ABI	AOI1	AOI2	AOI3	RDI	LAT (deg)	LON (deg)	HGT (m MSL)
0 0	1 0.8194	1.0 1.	.0000	1.0000	1.0000	1.0000	0.0972	34.794250	-103.777551	1484.657958
0 0	2 0.7915	1.0 0.	.9333	0.0906				34.822549	-103.742289	1494.605712
0 0	3 0.7693	0.8 1.	.0000	0.2466				34.808827	-103.775906	1493.475219
0 0	4 0.7541	0.8 1	.0000	0.1703				34.794273	-103.795162	1486.733154
0 0	5 0.7427	0.8 1	.0000	0.1135				34.808803	-103.757007	1489.469116
•										
•										
•										
28 21	1 0.7887	0.8 1.	.0000	1.0000	1.0000	1.0000	0.3437	37.527816	-99.320685	704.773681
28 21	2 0.7548	0.8 0.	.9667	0.2408				37.542482	-99.320931	698.050415
28 21	3 0.7490	0.8 1.	.0000	0.1452				37.494000	-99.461953	732.783630
28 21	4 0.7448	0.8 1.	.0000	0.1241				37.454649	-99.320510	694.167236
28 21	5 0.6007	0.8 0.	.5000	0.4037				37.498394	-99.320184	681.280273

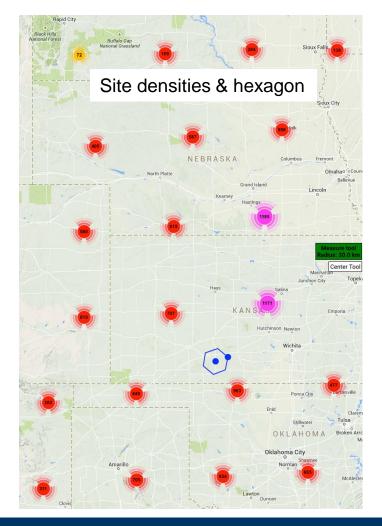
Geometric constraint on selecting mobile radar sites

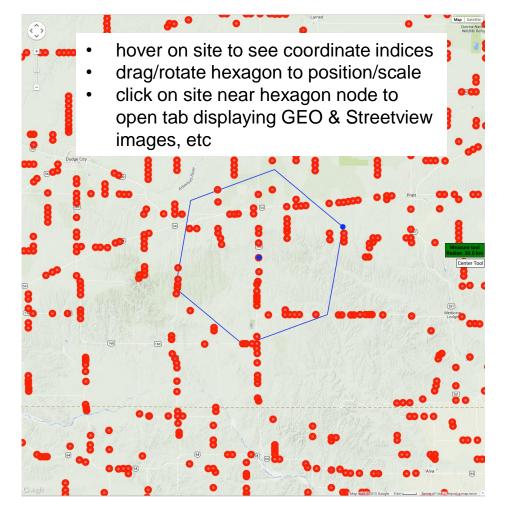
- Consider example idealized MCS deployment using mobile radar sites.
- Consider mobile radars only
- Basic equilateral triangular element of "radar hexagon" is optimal. Slight deviation d of baseline length R is acceptable (d << R). Depends on available sites.
- "Sub-arrays" composed of triangular elements are optimal for cases with < 7 radars.



Choosing sites relative to hexagon & gridpoints

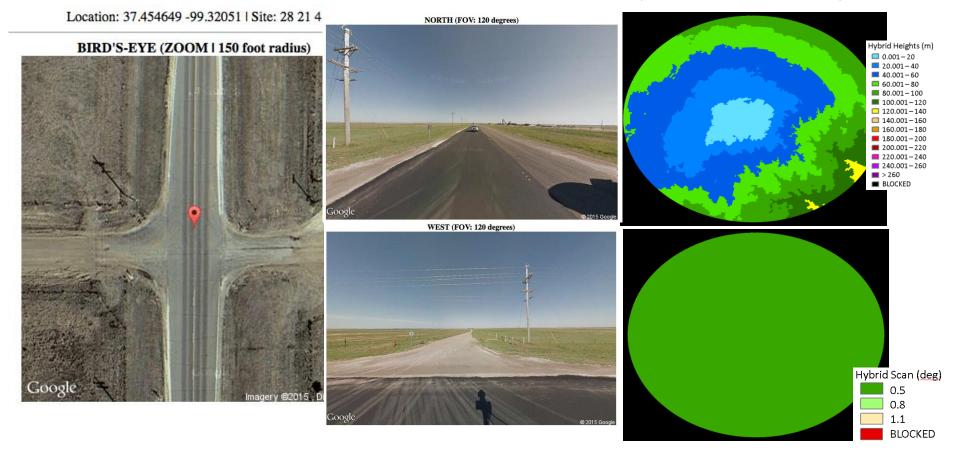
Kansas Potential Mobile Radar Sites


- Example shows radar sites & gridpoints in KS
- Two hexagons that would typically be used in PECAN
 - 15 km face (e.g., CI & pure Bore cases with no MCS)
 - > 30 km face (MCS case)



Locating hexagon & choosing sites for a PECAN IOP

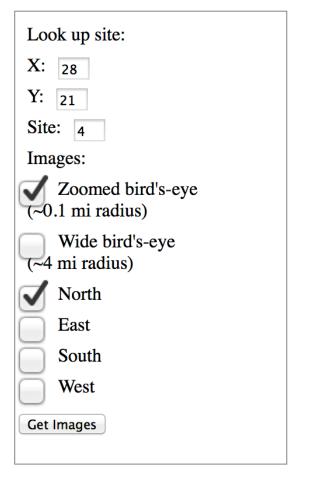
NSSL "PECAN Site Explorer": <u>www.nssl.noaa.gov/projects/shave/pecan</u> (display/select sites with hexagon tool)



Example site images

- Google terms-of-use do not not allow mass-storing content
- Solution: on-demand images generated using Google APIs
- Images are ~ 30 kB and quite suitable for rural bandwidth

Hybrid scan blockage images from ArcView (Top: height of lowest unblocked gate; bottom: elevation angle of lowest unblocked gate)



Site tools for mobile users

www.nssl.noaa.gov/projects/shave/pecan/mobile.html

Select desired image(s) in limited bandwidth

www.nssl.noaa.gov/projects/shave/pecan/nearme.html

Find sites closest to (variable) input location

18 sites are near you within 15 km (Closest 10 are displayed; 'L' current location)

Site (distance): X Y SITE A(0.00 km): 28 21 4 B (4.81 km): 28 20 2 C (4.86 km): 28 20 1 D (8.04 km): 28 20 1 E (8.14 km): 28 20 1 E (9.08 km): 28 20 5 G (9.77 km): 28 20 5 G (9.77 km): 28 21 2 H (11.30 km): 29 21 1 J (12.87 km): 29 21 5

