

PECAN: Mobile Radar Deployments

٥

Available Assets: Mobile Radars

-Multiple-Doppler Hexagon

- 7 radars
 - 2 C-band radars (2 SMART-Rs) (1 SR is DP)
 - 5 X-band radars (3 DOWs, NOXP, MAX)
 - » Of which, 4 (2 DOWs, NOXP, MAX) are dual polarization

-Not in Hexagon

- X-band rapid-scan (RAXPOL, dual-polarization)

SMART-R Specs

Transmitter	C-Band 250kW peak power, four selectable pulse durations (0.3-2.5 µs) Selectable PRF: 300-3000 Hz
Antenna	1.5-deg beamwidth30 degrees / second
Data	Z, V, SW, RhoHV, ZDR 2048 gates, 62.5 m gate length, clutter filtering, staggered PRF
Polarization	SR1 single SR2 dual-pol
Archive	Data burned to writeable CD-ROM

DOW6 DOW7 Specs

Transmitter	X-band 2x 250kW peak power, Pulse duration from 0.2 μs – long duration PRF: 300 – 5000 Hz	
Antenna	0.9-deg beamwidth 50 degrees / second	
Data	Z,V, SW, RhoHV, ZDR, PhiDP, KDP in dual-45 mode (LDR in H + 45 mode, not in PECAN) ~2000 gates 15, 30, 45,, long m gate length, clutter filtering, staggered PRF, each PRT's data stored separately Full time series (IQ) (~1 TB per IOP per DOW) TITAN processing, real time upload of CFRADIAL	
Polarization	Dual-Polarization, dual-frequency	
Archive	Internal RAID (several TB), mirrored external USB3 Raid (1-16 TB)	

DOW8 (Not "Rapid-Scan" for PECAN) Specs

Transmitter	250kW peak power, Pulse duration from 0.2 μs – long duration PRF: 300 – 5000 Hz
Antenna	0.9-deg beamwidth 50 degrees / second
Data	Z,V, SW, ~2000 gates 15, 30, 45,, long m gate length, clutter filtering, staggered PRF, each PRT's data stored separately Full time series (IQ) (~1 TB per IOP per DOW) TITAN processing, real time upload of CFRADIAL
Polarization	Single Polarization
Archive	Internal RAID (several TB), mirrored external USB3 Raid (1-16 TB)
Wx Obs	Possibly 14 m Wx mast, T, RH, Wind, Pressure, 1 Hz

NOXP (NSSL) Specs

Transmitter	X-Band 250kW peak power, Pulse Duration: PRF: 2500 Hz (Vortex2)
Antenna	0.9-deg beamwidth 30 degrees / second
Data	Z, V, SW, ZDR, RhoHV, PhiDP?, KDP? 75 m gate spacing (Vortex2)
Polarization	dual-pol
Archive	22

MAX (U Alabama) Specs

Transmitter	250kW peak power, four selectable pulse durations (0.4, 0.8, 1.0, 2.0 μs) Selectable PRF: 250-2000 Hz
Antenna	0.95-deg beamwidth 30 degrees / second
Data	Z, V, SW, ZDR, RhoHV, PhiDP, KDP, LDR
Polarization	dual-pol
Archive	?

RAXPOL (OU) Specs

Transmitter	X-band 20kW peak power, 200 W average power Pulse width: 0.1-40 μs Selectable PRF: 1000-10000 Hz
Antenna	1.0-deg beamwidth 180 degrees / second
Data	Z, V, SW, ZDR, RhoHV, PhiDP?, KDP? 7.5 – 75 m gate spacing
Polarization	dual-pol
Archive	2

Mobile Operations and Repair Center (MORC) (CSWR)

Platform	Sprinter van
Masted Comms and Wx	Wx instruments VHF radios, cell, satellite 14-18 m mast (to be installed winter 2014)
Archiving	Workstations (several) for archiving, QC, etc. in field
Coordination	Workstations (several) for coordination, etc. in field
Scientist Capacity	3 in rear, 1 in front, 1 driver (max seat-belted crew = 5)

MORC likely deployed for missions where DOWs do not return to Hays

Mobile Radar (hexagon) + All Assets

Example during an MCS Deployment

Baselines: 30-35 km "Diameter": 60-70 km. Can be rotated.

For MCS IOP:

- SR's (C-band are upstream),
- DOWs are in 2nd line,
- MAX, NOXP are "east"

Start time of data collection ~ 9pm. (earlier?)

- Typical distance 150-200 miles. 2.5 3 hours
- Distance to sites as much as 300 miles ~5 hours
- Worst case is 360 miles at extreme SE ~ 6 hours
- Set up time and warm up ~ 0.5 hours

Departure from Hays 2:30pm – 6:30pm Typically ~ 5pm.

Radars are stationary during IOP. No "chasing".

www.delorme.com

Conrad days PECAN radars: Sit and Spin

HAYS Offers: Sip and Spin Bar and Laundromat

Scanning Strategies:

MCS:

- Top angle: 50 degrees ~ 15 km AGL @ 15 km range
- 5 minute volumetric updates
- NOXP, SR1, SR2, MAX, DOW8: 30 deg/s
- 24 tilts
- DOW6, DOW7: 45 deg/s
- 36 tilts (and zenith calibration sweeps)

Clear Air Mode (e.g., CI, Bore, and before MCS reaches the hexagon):

- Top angle: 30 degrees = 3km AGL @ 12 km range
- 10 minute volumetric updates
- 1/2 1 degree elevation increments
- 31 or more tilts for all radars
- 20 deg/sec scans more pulses/beam for better sensitivity

Everyone analyzing radar data has to count on all 7 radars:

- Critical that all 7 radars are synched
- Critical that all 7 radars scan 360 deg full IOP, in modes requested by Radar Coord

Radar Coordinator duties (details being discussed)

- following consensus of PI's or Mission Scientist, or Governor of Kansas, decides hexagon location (Ziegler talk) and configuration (MCS, CI, Bore)
- in Hays or in a hexagon radar.
- coordinates with radar Pis and crews to ensure that hexagon is properly executed
- coordinates any en route changes to hexagon with PIs and/or MS
- establishes scan modes and changes of scan modes and coordinates this with radars.
- warns radars of safety hazards
- communicates end of operations to radars
- ensures that all radar teams get to lodging locations ("takes attendance")

Communications

- Verizon cellular is pretty good in Kansas.
- 2nd carrier could fill Verizon holes (ATT/Sprint)
- DOW6 and DOW7 with 18 m masts and high power VHF may be able to talk to others in hexagon.
- Real Time Radar Data to EOL Field Catalog
- SR (C-band) data and DOW7 (central) data highest priority for mission planning.
- 88D and EOL Field Catalog radar imagery probably good enough to warn of rare events where evacuation might be necessary
- Evacuation only in very rare circumstances

Mobile Radar Data during PECAN:

• Real-time display on NCAR field catalog of data from several radars (DOWs, SRs)

Mobile Radar Data after PECAN:

- Quick-look from all radars (1-deg?) before final, QC-ed data available
- DORADE (compliant) format
- All QC-ed radar data at sites available to PECAN Pis.

MCS Pre-Deployment: Mobile Radars

- Western-most radars need to be in position (and ready to operate) at -1.5 to -1.0 hours (3600 s x 15 m/s)
 - Can "cheat" towards the deployment direction, even before final forecast decision
 - Perhaps allows dinner, and/or pre-sunset deployment, etc.

MCS (and other mission) Adaptability:

- Can radars adjust?
 - Western (overtaken or soon-to-be overtaken) radars probably cannot adjust
 - Eastern/Downstream radar(s) may have some flexibility in changing forecast
 - Out of the precipitation (dry roads)
 - E.g., If traveling ~45 mph, could travel ~70 km to the south in ~ 1 hour
- What if a radar is unavailable prior to IOP?
- What if radar breaks during IOP?
- Pentagon?
- Hexagon with hole?
- Rectangle?
- ➢ RAXPOL?

"Dead" Zones at 15 km AGL assuming 50 degree to elevations

Lowest Radar Observation level

Lowest Beam

- No terrain/foliage/structure blockage
 - Lowest untruncated beam
 ~0.5 deg for 1 deg bw X-band,
 (~0.8 deg for 1.5 deg bw C-band)
 Minimum observation height:
 - Range 20 km -> ~200 (300) m AGL
 - Range 50 km -> ~600 (850) m AGL
- Light Blockage 1 degree
 - Lowest untruncated beams 1.5 (1.8) deg Minimum observation height:
 - Range 20 km -> ~550 (650) m AGL
 - Range 50 km -> ~1.5 (1.7) km AGL

Attenuation is bad at C-band And really bad at X-band

DOW

SR

Example from Vortex2

CI Deployment

- Should radar deployment aim for the CI "bulls-eye"
 - SW radars are not optimally deployed for CI
 - But, are optimized sampling between the front and CI
 - Which X, C bands should be where in hexagon?
 - Clear air scanning mode (10 min, high sensitivity)

Bores: Mobile Radars

Target southern and southeast regions of MCSs

Bore Deployment

Which X, C bands should be where in hexagon? Smaller hexagon?

Clear Air Scanning Mode (10 minutes, high sensitivity)

