STILT Modeling Update

Martín Hoecker-Martínez

University of Michigan

Prepared May 10, 2016

Martín Hoecker-Martínez (Univ. of Mi)

STILT Modeling Update

Prepared May 10, 2016 1 / 13

3

(日) (周) (三) (三)

Introduction

- Previous Uses
- Flight Planning
- Scale of Application
- Curtains
- Optimized Flux Estimation

2 Setup

Trial Runs

3 Research Runs

• Following Kort 2008

- Aircraft Observations
- $\bullet\ \sim 6 \ {\rm day} \ {\rm Back} \ {\rm Trajectories}$
- Initial Condition from Model at 145°W
- Flux Inventories
- Results
 - Refined Land Flux Estimate

Kort et al. (2008)

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Used Forecast Winds
- 48 hour back trajectories

イロト イヨト イヨト イヨト

- Used Forecast Winds
- 48 hour back trajectories

- Whole campaign \sim 2 days
- $\bullet\,$ Back to back flights $\sim 1~{\rm day}$
 - $\bullet~$ eg RF17 and RF18 $\rm CO_2$
- Pacific Sector of Southern Ocean \sim 10 days

- < A

- $\bullet\,$ Whole campaign ~ 2 days
- $\bullet\,$ Back to back flights $\sim 1~{\rm day}$
 - $\bullet~$ eg RF17 and RF18 $\rm CO_2$
- Pacific Sector of Southern Ocean \sim 10 days

- < A

- $\bullet\,$ Whole campaign ~ 2 days
- $\bullet\,$ Back to back flights $\sim 1~{\rm day}$
 - $\bullet~$ eg RF17 and RF18 $\rm CO_2$
- Pacific Sector of Southern Ocean \sim 10 days

Image: Image:

- Initial Optimized Flux Results
- Campaign scale CO_2 & O_2
 - Whole campaign Duration
 - 1^{st} vs 2^{nd} half?
- Back to back CO_2 & O_2 (RF 17&18)
- Compare with
 - CESM
 - Garcia and Keeling (2001), McNeil et al. (2007), Takahashi et al. (2002), ...

Curtains

Alt. lat. CO_2 (color)

- Upwind Observations
 - Previous flight
 - Model output
 - Climatology
 - Upwind Observations
 - Other . . .
- Create a Curtain (Here CO₂)
- Connect Curtain with Observations

Curtains

Alt. lat. CO_2 (color)

Martín Hoecker-Martínez (Univ. of Mi)

STILT Modeling Update

Prepared May 10, 2016 7 / 13

- Choose Initial Curtain
- Prior (Flux) Field Candidates
 - CESM Model CO₂/O₂ Flux
 - Climatologies
 - Garcia and Keeling (2001)
 - McNeil et al. (2007)
 - Takahashi et al. (2002)
 - . . .
 - Physical Variables
 - Sea Surface Temp.
 - Salinity
 - Wind Speed
 - o . . .
- Modify to Fit Observed Values during ORCAS

3

• • • • • • • • •

Trial Runs

- 62 trial points
- 4096 particles
- $\bullet~\leq$ 10 days back

< □ > < ---->

Distribution at T - 10 days

Latitude crossing fraction

Latitude crossing fraction

• Storms cause \sim 2 day pauses

Martín Hoecker-Martínez (Univ. of Mi)

Prepared May 10, 2016 10 / 13

Distribution at T - 10 days

Latitude crossing fraction

Latitude crossing fraction

- Storms cause $\sim 2~{\rm day}~{\rm pauses}$
- High altitude winds are *fast*

Prepared May 10, 2016 10 / 13

Distribution at T - 10 days

Latitude crossing fraction

Latitude crossing fraction

- ullet Storms cause \sim 2 day pauses
- High altitude winds are *fast*
- Sometimes you get stuck
- Low altitude winds can be *slow*

Distribution at T - 10 days

Latitude crossing fraction

Latitude crossing fraction

- Storms cause $\sim 2~{\rm day}~{\rm pauses}$
- High altitude winds are *fast*
- Sometimes you get stuck
- Low altitude winds can be *slow*

Distribution at T - 10 days

Latitude crossing fraction

Latitude crossing fraction

- Storms cause $\sim 2~{\rm day}~{\rm pauses}$
- High altitude winds are *fast*
- Sometimes you get stuck
- Low altitude winds can be *slow*
- Dispersion can be huge

Prepared May 10, 2016 10 / 13

- At flask sample locations
- Allow multiple curtains
 - Previous Flights
 - Whole Campaign
 - Model output
 - West Pacific Observations?
- Statistically stable, $N \gg 1$
- Computationally efficient, N ~ 1

Thanks

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

- Garcia, H. E. and Keeling, R. F. (2001). On the global oxygen anomaly and air-sea flux. Journal of Geophysical Research. C. Oceans, 106:31155–3166.
- Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Gerbig, C., Nehrkorn, T., Daube, B. C., Kaplan, J. O., Houweling, S., and Wofsy, S. C. (2008). Emissions of CH₄ and N₂O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. *Geophysical Research Letters*, 35(18):n/a-n/a. L18808.
- McNeil, B. I., Metzl, N., Key, R. M., Matear, R. J., and Corbiere, A. (2007). An empirical estimate of the southern ocean air-sea co2 flux. *Global Biogeochemical Cycles*, 21(3).
- Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Fely, R. A., Sabine, C., et al. (2002). Global sea-air co 2 flux based on climatological surface ocean pco 2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9):1601–1622.