Summertime Atmospheric Boundary Layer Gradients of O_2 and CO_2 Over the Southern Ocean

Eric J. Morgan¹, Britt Stephens², Jonathan Bent^{2,3}, Matthew Long², Colm Sweeney³, Kathryn McKain³, and Ralph Keeling¹

¹Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
 ²National Center for Atmospheric Research, Boulder, CO, USA
 ³NOAA/ESRL, Boulder, CO, USA

Photo: Alec Chin, R/V Laurence M. Gould

Introduction | Motivation

Southern Ocean CO₂ Fluxes

Redrawn by Britt Stephens from Anav et al., 2013, J. Climate

- The $\mathrm{O}_2/\mathrm{N}_2$ Ratio and CO_2 Airborne Southern Ocean Study
- $\bullet~19$ research flights, 98 flight hours, Jan 15–Feb
 25 2016

Introduction | ORCAS

ORCAS RF01-19 CO2_NOAA

Introduction | ORCAS

ORCAS RF01-19 O2_AO2

$\Delta O_2 / \Delta CO_2$

• Oxidative Ratio (**OR**): moles of O_2 produced or consumed divided by the moles of CO_2 produced or consumed during respiration, photosynthesis, or combustion

All expressed on a molar basis (e.g., mol mol^{-1} or $ppm \ eq. \ ppm^{-1}$)

δAPO

- Atmospheric Potential Oxygen
- $\delta APO = \delta (O_2/N_2) + \frac{1.1}{X_{O_2}} (CO_2 350)$
- *i.e.*, atmospheric oxygen with the influence of the terrestrial biosphere removed, in units of per meg (*Stephens et al., 1998*)

Introduction | Definitions

From/after: Keeling, 1988; Masiello, et. al., 2008; Randerson, et al., 2006; Steinbach, et al., 2011

Results | Example Dip (RF07)

Results | Example Dip (RF07)

 $\begin{array}{l} \mbox{Observed } {\rm CGR}_{5kft} = -5.1 \\ \mbox{Observed } {\rm CGR}_{15kft} = -4.0 \\ \mbox{CESM } {\rm CGR}_{5kft} = 113.2 \\ \mbox{CESM } {\rm CGR}_{15kft} = -8.4 \end{array}$

9/21

Results | Terrestrial and Fossil Fuel Vertical Gradients

Results | Terrestrial and Fossil Fuel Vertical Gradients

	Reference Height	Description	$\mathrm{Mean}{\pm}1\sigma$
	5 m kft	$\Delta {\rm CO}_2 \ ({\rm ppm})$	-0.32 ± 0.5
		$\Delta O_2 ~(\text{ppm eq})$	1.6 ± 2.5
		$\Delta APO (ppm eq)$	1.2 ± 2.1
		$\Delta \mathrm{O}_2 / \Delta \mathrm{CO}_2$	-2.6 ± 16.4
		$\Delta {\rm APO}/\Delta {\rm CO}_2$	-1.5 ± 16.8
	15 kft	$\Delta {\rm CO}_2 \ ({\rm ppm})$	-1.36 ± 0.8
		$\Delta O_2 \ (ppm \ eq)$	4.4 ± 3.0
		$\Delta APO (ppm eq)$	3.0 ± 2.4
		$\Delta \mathrm{O}_2 / \Delta \mathrm{CO}_2$	-3.3 ± 1.6
		$\Delta \mathrm{APO}/\Delta \mathrm{CO}_2$	-2.3 ± 1.6

Results | Observations—CGRs (5 kft)

Results | Observations—CGRs (15 kft)

Results | Campaign Average Gradient Ratio

- Vertical gradients of CO_2 and O_2 were dominated by a persistent marine productivity signal with minimal contributions from recent terrestrial biosphere activity or fossil fuel burning
- $O_2:CO_2$ are sensitive to reference height, the selection of which influences the representivity of a given gradient ratio
- While there is considerable variability in these ratios, they converge to a campaign average of -2.8
- Based on model simulations, this large-scale representative $\Delta O_2 : \Delta CO_2$ should display a prominent seasonal cycle
- This seasonal cycle is an interesting test for model simulations, as it combines thermal, biological, and transport processes into a single metric

Supplemental | CESM Example Dip (RF07)

2016-01-30 20:00:00

2016-01-30 20:00:00

2016-01-30 20:00:00

Supplemental | 15 kft CESM vs Observations

