Airborne in-situ measurements of relative humidity and clouds over the Southern Ocean

John D'Alessandro¹, Minghui Diao¹, Chenglai Wu², Xiaohong Liu²

¹Department of Meteorology and Climate Science, San Jose State University ² Department of Atmospheric Science, University of Wyoming **The ORCAS science team, RAF flight and ground crew**

Mixed-phase clouds (MPC) over the Southern Ocean

- Lawson and Gettelman (2014) found that nudging the Community Earth System Model (CESM) to match with insitu observations over Antarctica lead to net cloud radiative effect from -5 to -30 W m⁻² (right)
- Tan and Storelvmo (2016) found that the Wegener-Bergeron-Findeison process (WBF) accounts for the vast majority of variance of the cloud phase partitioning in MPC as simulated in the Community Atmosphere Model version 5 (CAM5) (in red below).

-30 -25 -20 -15 -10 -5

Summer (DJF) Differential CRE for CESM Case:

60E

90E

120E

5 10 15 20 25 30

0

The NSF ORCAS campaign

- The NSF O₂/N₂ Ratio and CO₂ Airborne Study (ORCAS)
 - Punta Arenas, Chile
 - January 15th February 28th, 2016
 - 18 flights
 - ~100-250 m resolution
 - NCAR GV aircraft
- Cloud instrumentation:
 - Cloud Droplet Probe (CDP; 2-50 μm)
 - 2-Dimensional Optical Array Probe (2DC; 62.5-1600 μm)
 - Rosemount Icing Detector probe (RICE)
- Water vapor instrumentation
 - The Vertical Cavity Surface Emitting Laser Hygrometer (VCSEL)
 - 6% accuracy ± 1% precision

Zonal RH distribution - RH_{ice} where T < 0°C

- High RH_{ice} values of 160%–170%
- Average RH_{ice} of ~80% in middle/upper troposphere.
- Low-level RH often near saturation.

 $= 0^{\circ}C$

T = -40°C

 10% of observations supersaturated (with respect to ice)

Clear-sky ice supersaturation (ISS)

- Clear-sky ISS spatially correlated with updraft and higher water vapor concentrations (Diao et al., 2014)
- Lower temperatures have more ISS > 125%
- 4% of all observations clear-sky ISS and 76% clear-sky non-ISS (T < 0°C)

Determining Cloud Phase

	Nc _{CDP} (cm ⁻³)	Nc _{2DC} (L ⁻¹)	Temperature (°C)
Liquid only	> 1	= 0	0 to -40
Mixed- phase	> 1	> 0	0 to -40
Ice only	= 0	> 0	< 0
	Average cloud height (km)	Average RICE (dmV/ds)	Variance of w (m s ⁻¹)
Liquid phase	1.60	12.17	0.22
Mixed phase	2.10	6.00	0.20

Cloud detection:

- CDP sampling is sensitive to spherical particles, thus we use samples at 2-50 µm and >1 cm⁻³ to identify cloud droplets.
- Use Fast-2DC samples at 62.5-1600 µm to identify ice crystals, assuming most cloud droplets are smaller.

Larger variance of w is seen in the
ice phase compared with the
other two phases.

Small scale variability in cloud phase

Occurrence frequencies of supersaturation in various cloud phases

Supersaturation occurs at: mixed-phase/SLW primarily at -10 °C < T < 0°C

Mixed-phase dominant at -40°C < T < -20°C

Occurrences of clear-sky ISS more frequent than in-cloud ISS at T < -40°C

Average IWC, LWC, Nc_{ice}, Nc_{liq}

- Average IWC_{ice-only} increases with temp.
- Average IWC_{mixed-phase} is lower than average IWC_{ice-only} at temperatures above -20°C
- Average Nc_{liq} ~100 cm⁻³ in liquid phase
 - Nc_{liq,liquid-only} > Nc_{liq,mixed-phase} (-30°C to -10°C)

Comparing NCAR Community Atmosphere Model version 5 (CAM5) with ORCAS

Simulation details

- 0.23°x0.31° horizontal resolution
- 30 vertical levels
- Restricted analyses to ORCAS domain
- Compared ORCAS data with multiple outputs during Austral Summer (DJF)

Results shown for 01/29/02 UTC 2100

Comparing observations with CAM5 simulations: RH_{ice} **distributions over the Southern Ocean**

- Restricted to T < 0°C
- Lack of clear-sky ISS in CAM5
- Slightly narrower peaks for all PDFs of in-cloud RHi distributions in CAM5.
- PDFs of liquid and ice only phases show low and high biases for peak positions in CAM5, respectively.

Conclusions

The NSF ORCAS campaign provides in-situ measurements on various cloud phases over the Southern Ocean

- 1. High spatial heterogeneities, with small pockets of ice in SLW clouds and vice versa.
- 2. Higher variance of w in ice phase compared with liquid and mixed phases.
- 3. Average IWC_{mixed-phase} is lower than average IWC_{ice-only} at temperatures above -20°C

PDFs of RH_{ice}:

- 1. More clear-sky ISS was observed during ORCAS compared with CAM5 simulations.
- 2. CAM5 has narrower peaks at $RH_{ice} = 100\%$ for all cloud phases.
- 3. Liquid and ice phases show low and high biases in RH_{ice} peak positions in CAM5, respectively.