Boundary Layer Stoichiometry of Oxygen and Carbon Dioxide During ORCAS

Eric J. Morgan, Britt Stephens, Matt Long, Jonathan Bent, Ralph Keeling, Colm Sweeney, Kathryn McKain, and the ORCAS Science Team

Photo: Alec Chin, R/V Laurence M. Gould

Motivation: Why Do We Measure $CO_2 \& O_2$?

- CO_2 is an important greenhouse gas
- + ${\rm O}_2$ can tell us something about the behavior of ${\rm CO}_2$
- O_2 is interesting in its own right
- Vertical profiles of CO_2 and O_2 can be used to test models
- Atmospheric measurements of O₂ and CO₂ can be used to make top-down estimates of surface fluxes, ecosystem stoichiometry

$\Delta O_2 / \Delta CO_2$

- Oxidative Ratio (**OR**): moles of O_2 produced or consumed divided by the moles of CO_2 produced or consumed during respiration, photosynthesis, or combustion
- Molar Exchange Ratio (**MER**): ratio of the flux densities of ${\rm O}_2$ and ${\rm CO}_2$
- Apparent Molar Exchange Ratios (AMER) / Concentration Gradient Ratio (CGR): ratio of the concentration gradient between a region impacted by flux and background

All expressed on a molar basis (e.g., mol mol^{-1} or $ppm \ eq. \ ppm^{-1}$)

Definitions

 ΔO_2 : ΔCO_2

From/after: Keeling, 1988; Masiello, et. al., 2008; Randerson, et al., 2006; Steinbach, et al., 2011 4/38

Cumulative CESM Surface Fluxes Jan 15–Feb 25 2016

Example Dip (RF07)

 $\Delta \mathrm{O}_2: \Delta \mathrm{CO}_2 = -3.3 \pm 0.1$

 $\Delta \mathrm{O}_2: \Delta \mathrm{CO}_2 = -2.4 \pm 0.3$

The $\delta(O_2/N_2)$ Curtain Average

Throughout the campaign, large-scale enhancement of oxygen was seen in the lower troposphere.

The CO_2 Curtain Average

Conversely, large-scale drawdown of CO_2 is seen in the lower troposphere.

Mid-Troposphere–Surface Gradients

Seasonal Cycle Molar Ratios of Southern Hemisphere Stations

- SPO - PSA - CGO

Decomposition of the seasonal cycle at Baring Head, NZ Stephens *et al.*, *Biogeosciences*, 10, 2013

Mid-Troposphere–Surface Gradients | Observations

Mid-Troposphere–Surface Gradients | CESM

Mid-Troposphere–Surface Gradients | CESM with MER

CESM MERs and AMERs

Background Selection

Mid-Troposphere–Surface Gradients (CO_2)

Mid-Troposphere–Surface Gradients (APO)

Mid-Troposphere–Surface Gradients (Ratios)

Terrestrial and Fossil Fuel Vertical Gradients

Terrestrial and Fossil Fuel Vertical Gradients

Terrestrial and Fossil Fuel Vertical Gradients

- Boundary layer ΔO_2 : ΔCO_2 show local variability but converge to the campaign average of -2.8
- But this simple approach to estimating AMERs/CGRs should be seen as distinct from measurements or estimates of MERs
- Vertical gradients of CO_2 and O_2 were dominated by a persistent marine productivity signal with minimal contributions from recent terrestrial biosphere activity or fossil fuel burning
- Airborne $\rm CO_2$ and $\delta(\rm O_2/N_2)$ measurements provide a useful diagnostic for CESM simulations
- The CESM output analyzed here appears to overestimate the summertime Southern Ocean CO_2 sink

