

ORCAS modeling frameworks

Matthew C. Long

Climate and Global Dynamics Laboratory National Center for Atmospheric Research

September 2016

ORCAS STM

- $\rightarrow\,$ Contextualize the field campaign: understand time evolution, process contributions.
- $\rightarrow\,$ Evaluate relationship between seasonal net outgassing and column integrals (O_2,CO_2).
- $\rightarrow\,$ Develop process-understanding of the mechanisms driving fluxes and variations in the $O_2{:}CO_2$ ratio.
- $\rightarrow\,$ Identify model deficiencies; suggest improvements.

Compset	Description	Resolutions	Notes
В	Fully coupled	1°	 long control runs (\$\mathcal{O}\$(10³) yr\$) internal variability, not in phase with nature experimental application: nudge atm. state to forecast product (GEOS5, MERRA); prognostic column physics
F	Atmosphere-land	2° 1° 0.25°	 forced by observed SST specified dynamics: nudge state to re-analysis or forecast products (MERRA, GEOS5)
G	Ocean-ice	1° 0.1°	 forced by re-analysis products climatological or inter-annually varying forcing

Sluggish versus energetic oceans

Kinetic energy

CAM-SD coupled configuration

Initialized 3-day forecasts every day: nudge CAM to GEOS-5 forecast model; fully coupled, prognostic air-sea fluxes.

- O₂ and CO₂ distributions;
- Idealized tracers for source regions.

Special thanks to Francis Vitt, Jean-Francois Lamarque Andrew Gettlman and Simone Tilmes

Potential temperature simulation

\mathbf{O}_2 simulation

\mathbf{CO}_2 simulation

Concentration predictions: model versus GV

DMS simulation

Fixed emission climatology

Limited prognostic chemistry

H02 + H02 -> H202
H2O2 + OH -> H2O + HO2
SO2 + OH -> H2SO4
DMS + OH -> SO2
DMS + OH -> .5 * SO2 + .5 * HO2
DMS + NO3 -> SO2 + HNO3

SOx concentrations specified.

Simulated fluxes

10

Time evolution of surface fluxes

Simulated fluxes (Dec-Mar)

Simulated O₂:CO₂ ratios

Daily mean mixing ratios (Southern Ocean)

Surface fluxes in phase space (Dec-Feb)

Simulated O₂:CO₂ ratios

Hemispheric signals: constraints on seasonal net flux?

Seasonal net outgassing and column integral

Climatology (1979-2015)

Seasonal net outgassing and column integral

Flux versus column integral (1979-2015)

Synoptic variability drives CO₂ flux

1948-2015 CESM hindcast (g.e11_LENS.GECOIAF.T62_g16.009; modified CORE-forcing)

Reynold's decomposition

$$c = \overline{c} + c'$$

where

$$\overline{\overline{c}} = \overline{c}$$
 and $\overline{c'} = 0$

Linear decomposition of anomalies for function of two variables

$$F = AB$$

$$F' = (AB)' = AB - \overline{(AB)}$$

$$= A'\overline{B} + \overline{A}B' + A'B' + \overline{A'B'}$$

CO₂ flux components (at arbitrary point)

Flux decomposition

O₂ flux components (at arbitrary point)

CMIP5 model skill metrics: Seasonal cycle in air-sea CO₂ flux

Anav et al. 2015

Attribution

Mixed layers depth biases in hindcast runs: Missing physics?

Mesoscale modulation of vertical mixing

Mixed layer depth (winter)

Physical and biological controls

Carbonate production: active alkalinity cycling?

Closed system: pCO₂ versus DIC and Alk

 N_2O cycling?

Jan Climatology (g.e11_LENS.GECOIAF.T62_g16.009)

Sarmiento & Gruber 2006

- $\rightarrow\,$ Contextualize the field campaign: understand time evolution, process contributions.
- $\rightarrow\,$ Evaluate relationship between seasonal net outgassing and column integrals (O_2,CO_2).
- $\rightarrow\,$ Develop process-understanding of the mechanisms driving fluxes and variations in the $O_2{:}CO_2$ ratio.
- $\rightarrow\,$ Identify model deficiencies; suggest improvements.