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Objectives

→ Contextualize the field campaign: understand time evolution, process

contributions.

→ Evaluate relationship between seasonal net outgassing and column

integrals (O2,CO2).

→ Develop process-understanding of the mechanisms driving fluxes and

variations in the O2:CO2 ratio.

→ Identify model deficiencies; suggest improvements.
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Model configurations

Compset Description Resolutions Notes

B Fully coupled 1◦

• long control runs (O(103) yr)

• internal variability, not in phase with

nature

• experimental application: nudge atm.

state to forecast product (GEOS5,

MERRA); prognostic column physics

F Atmosphere-land
2◦

1◦

0.25◦

• forced by observed SST

• specified dynamics: nudge state to

re-analysis or forecast products (MERRA,

GEOS5)

G Ocean-ice
1◦

0.1◦

• forced by re-analysis products

• climatological or inter-annually varying

forcing
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Sluggish versus energetic oceans

Kinetic energy

1° 0.1°
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CAM-SD coupled configuration

Atm

CAM

GEOS-5

Ocean

POP

Ice

CICE

Land

CLM

Coupler

CPL

Initialized 3-day forecasts every day:

nudge CAM to GEOS-5 forecast model;

fully coupled, prognostic air-sea fluxes.

• O2 and CO2 distributions;

• Idealized tracers for source regions.

Nudging timescale

Special thanks to Francis Vitt, Jean-Francois Lamarque

Andrew Gettlman and Simone Tilmes

5



Atmospheric state validation: model versus GV

Potential temperature simulation
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Concentration predictions: model versus GV

O2 simulation
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Concentration predictions: model versus GV

CO2 simulation
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Concentration predictions: model versus GV

DMS simulation

Fixed emission climatology

Limited prognostic chemistry

HO2 + HO2 -> H2O2

H2O2 + OH -> H2O + HO2

SO2 + OH -> H2SO4

DMS + OH -> SO2

DMS + OH -> .5 * SO2 + .5 * HO2

DMS + NO3 -> SO2 + HNO3

SOx concentrations specified.
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Simulated fluxes

Time-integrated surface fluxes (Dec–Feb)
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Time evolution of surface fluxes

Simulated fluxes (Dec-Mar)
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Simulated O2:CO2 ratios

Daily mean mixing ratios (Southern Ocean)
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Simulated O2:CO2 ratios

Surface fluxes in phase space (Dec–Feb)
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Simulated O2:CO2 ratios

Time-integrated surface flux O2:CO2 ratio (Dec–Feb)
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Hemispheric signals: constraints on seasonal net flux?

Oxygen Carbon dioxide
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Seasonal net outgassing and column integral
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Seasonal net outgassing and column integral

Climatology (1979-2015)
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Seasonal net outgassing and column integral

Flux versus column integral (1979-2015)
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Synoptic variability drives CO2 flux

Variance explained by climatology (detrended)

CO2 O2

1948–2015 CESM hindcast (g.e11 LENS.GECOIAF.T62 g16.009; modified CORE-forcing)
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Flux decomposition

Reynold’s decomposition

c = c + c ′

where

c = c and c ′ = 0

Linear decomposition of anomalies for function of two variables

F = AB

F ′ = (AB)′ = AB − (AB)

= A′B + AB ′ + A′B ′ + A′B ′
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Flux decomposition

CO2 flux components (at arbitrary point)
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Flux decomposition

O2 flux components (at arbitrary point)
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CMIP5 model skill metrics: Seasonal cycle in air-sea CO2 flux

Anav et al. 2015 23



Attribution

Seasonal flux

biases

Physics

mixed layer

depths

forcing

Biology

bottom up

top down

Chemistry

Alkalinity

cycling
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Mixed layers depth biases in hindcast runs: Missing physics?

March September

Downes et al. 2015

25



Mesoscale modulation of vertical mixing

Mixed layer depth (winter)
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Physical and biological controls
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Carbonate production: active alkalinity cycling?

Balch et al. 2011 28



Carbonate production: active alkalinity cycling?

Closed system: pCO2 versus DIC and Alk
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N2O cycling?

Simulated nitrification (z > −100m)

Jan Climatology (g.e11 LENS.GECOIAF.T62 g16.009)
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Summary

→ Contextualize the field campaign: understand time evolution, process

contributions.

→ Evaluate relationship between seasonal net outgassing and column

integrals (O2,CO2).

→ Develop process-understanding of the mechanisms driving fluxes and

variations in the O2:CO2 ratio.

→ Identify model deficiencies; suggest improvements.
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