Using STILT to Estimate ΔP_{CO_2} , P_{O_2}

Martín Hoecker-Martínez

Climate & Space College of Engineering University of Michigan

STILT TOGA Footprint Convolution Transport Estimation Coming Attractions

STILT

- STILT Leverages the HYSPLIT Model from NOAA ARL Stein et al. (2015)
- Air-Sea interaction footprints are calculated using STILT
- Footprint
 - $= \Delta Concentration/flux$

Lin et al. (2003)

STILT

- STILT Leverages the HYSPLIT Model from NOAA ARL Stein et al. (2015)
- Air-Sea interaction footprints are calculated using STILT
- Footprint
 - $= \Delta Concentration/flux$

3 / 11

Receptors at TOGA Observations

- Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

One (1) Day Area of Influence

4 / 11

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Two (2) Day Area of Influence

Receptors at TOGA Observations

- Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Three (3) Day Area of Influence

4 / 11

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Four (4) Day Area of Influence

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Five (5) Day Area of Influence

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Six (6) Day Area of Influence

4 / 11

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Seven (7) Day Area of Influence

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Eight (8) Day Area of Influence

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Nine (9) Day Area of Influence

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Ten (10) Day Area of Influence

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Eleven (11) Day Area of Influence

- Receptors at TOGA Observations
 - Non-zero footprints plotted
- 4096 Particles
- 0.5° GDAS Re-analysis wind Field
- Some long simulations fail : (

Twelve (12) Day Area of Influence

Convolution

Convolove Footprint with

- CO₂, O₂ flux Climatologies
- CSEM fluxes
- O₂ surface saturation concentration
- Sea Surface Salinity/Temperature
- . . .
- Estimate ΔCO_2 and ΔO_2

$\mathsf{CO}_2 \text{ fluxes}$

CSEM fluxes

O₂ fluxes

SPACE

Climatology

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

ORCAS Field Catalog http://catalog.eol.ucar.edu/orcas

7 / 11

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

B. Stephens Preliminary ORCAS Data

7 / 11

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

ORCAS Field Catalog http://catalog.eol.ucar.edu/orcas

7 / 11

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

B. Stephens Preliminary ORCAS Data

7 / 11

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

Palmer Long-Term Ecological Research Network

7 / 11

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed $\sim 0.1 \text{ ppm Draw}$ Down

- Lagrangian Bracket flights
- February 24, and 25 2016
- Spans Palmer Long Term Ecological Research Network
- Observed \sim 0.1 ppm Draw Down

Constrain Fluxes

- 24 hour time scale
- week time scale
- Other Initial Conditions
 - Upwind Ground stations
 - ORCAS Free Troposphere Obs.
 - Model Output
 - Other Suggestions?

Questions

9 / 11

- Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Gerbig, C., Nehrkorn, T., Daube, B. C., Kaplan, J. O., Houweling, S., and Worfsy, S. C. (2008). Emissions of CH₄ and N₂O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations. *Geophysical Research Letters*, 35(18):n/a–n/a. L18808.
- Lin, J., Gerbig, C., Wofsy, S., Andrews, A., Daube, B., Davis, K., and Grainger, C. (2003). A near-field tool for simulating the upstream influence of atmospheric observations: The stochastic time-inverted lagrangian transport (stilt) model. *Journal of Geophysical Research: Atmospheres*, 108(D16):n/a–n/a. 4493.
- Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F. (2015). Noaas hysplit atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12):2059–2077.

10 / 11