Biogeochemical observations from the Drake Passage Time-series

David Munro Univ. of Colorado

Colm Sweeney NOAA/Univ. of Colorado

Tim Newberger NOAA/Univ. of Colorado

Southern Ocean has global importance

- 40% of anthropogenic CO₂ uptake to date (Khatiwala et al., 2009)
- SO Nutrients support ~75% of the global ocean biological production (Sarmiento et al., 2004)

Ocean pCO₂ measurements The SOCAT database (1982 - 2014)280 322.5 365 407.5 450

Bakker et al 2016, ESSDD

Drake Passage Time-series Surface Ocean Measurements

Underway (~18-24 crossings yr⁻¹) ADCP (since 1996) Atm and Oce CO_{2} (since 2002) Oce O_{2} (since 2004)

Discrete

(~6-8 crossings yr⁻¹) XBT/XCTD (since 1996) TCO₂ (since 2002) PO₄ (Since 2002) NO₃ and SiO₄ (Since 2005) 13 C of TCO₂ (since 2005) 14 C of TCO₂ (2005 – 2010) Total water column (Mar 2006 and Sep 2009)

Annual cycle of pCO₂ in Drake Passage

Year day

Munro et al. (2015)

pCO_{20ce} obs during ORCAS

ΔpCO_2 obs during ORCAS

xCO_{2atm} obs during ORCAS

- N of Polar Front (∆pCO₂ +) source (R1 and R2)
- S of Polar Front (∆pCO₂) sink (R3 and R4)
- ∆pCO₂ more negative (↑ ocean uptake) south of the Polar Front over the time series
- $\Delta pCO_2 = pCO_{2oce} pCO_{2atm}$

- N of Polar Front (∆pCO₂ +) source (R1 and R2)
- S of Polar Front (∆pCO₂) sink (R3 and R4)
- ∆pCO₂ more negative (↑ ocean uptake) south of the Polar Front over the time series
- $\Delta pCO_2 = pCO_{2oce} pCO_{2atm}$

CaCO₃ production in DPT: Geochemical evidence for the "Great Calcite Belt"

Log(chl) micrograms/L

Yearday:009-040 V

From H. Dierssen

CaCO₃ production in DPT: Estimated change in TA from satellite PIC production

CaCO₃ production in DPT: Seasonal change in sPA from DPT (2002-2016)

CaCO₃ production in DPT: Depth profiles from March 2006

CaCO₃ production in DPT: Depth profiles from March 2006

Drake Passage March 2006 cruise			GLODAP version 2		
Region	Number of Stations	PIC:OC Export Ratio	Region	Number of Stations	PIC:OC Export Ratio
1	3	0.074	Atlantic Ocean		
2	4	0.075	30 to 45°S	205	0.066
3	6	0.015	45 to 60°S	192	0.022
4	6	0.001	60 to 75°S	194	0.028
Regions 1-4	19	0.029	45 to 75°S	386	0.025
			Indian Ocean		
			30 to 45°S	434	0.089
			45 to 60°S	185	0.003
			60 to 75°S	126	0.023
			45 to 75°S	311	0.011
			Pacific Ocean		
			30 to 45°S	461	0.081
			45 to 60°S	365	0.008
			60 to 75°S	224	0.034
			45 to 75°S	589	0.021

Anthropogenic C uptake from DPT $\delta^{13}\text{C}_{\text{TCO}_2}$

Surface $\delta^{13}C_{\text{TCO2}}$ change from the 1990s to the 2000s

Interior C inventory change from the 1990s to the 2000s based on $\delta^{13}C_{\text{TCO2}}$ depth profiles

From P. Quay

Anthropogenic C uptake from DPT $\delta^{13}\text{C}_{\text{TCO}_2}$

Surface $\delta^{13}C_{\text{TCO2}}$ change from the 1990s to the 2000s

Interior C inventory change from the 1990s to the 2000s based on $\delta^{13}C_{\text{TCO2}}$ depth profiles

Conclusions

Drake Passage Time-series provides the densest dataset of ocean pCO₂ in the Southern Ocean

DPT observations help constrain:
1) Biological production in the ocean
2) Ocean uptake of CO₂
3) CaCO₃ production in the surface ocean

