

The Portable Remote Imaging Spectrometer (PRISM)

Michelle Gierach & The PRISM Team Jet Propulsion Laboratory, California Institute of Technology

The PRISM Team:

PI: Pantazis Mouroulis

Science Co-I: Heidi Dierssen, U. Connecticut (& Kaylan Randolph)

Flight coordinator, integration Co-I: Ian McCubbin

Co-Is: Byron Van Gorp, Rob Green, Michael Eastwood, Bo-Cai Gao (NRL), Jose Rodriguez, Joe Boardman (AIGLLC)

Engineering Team: Asad Aboobaker, Frank Loya, Chuck Sarture, David Thompson, Scott Nolte, Didier Keymeullen, Sarah Lundeen, Mike Borden **NASA Partner:** AFRC

PRISM Specifications and Design

http://prism.jpl.nasa.gov

H h s		gh throughput and gh uniformity Dyson ectrometer	2-channel SWIR radiome	ter spectrom	vacuum enclosure baseplate
Spectral	Range	349.9 – 1053.5 nm		A month of the	7++
	Sampling	2.83 nm			
	Resolution (FWHM)	3.5 nm typ	1		
	Calibration uncertainty	<0.1 nm			
Spatial	Field of view	30.7°	telescope	;	
	Instantaneous FOV	0.882 mrad			
	sampling		Parameter	Channel	Channel
	IFOV resolution (FWHM)	0.97 mrad		1	2
	Cross-track spatial pixels	608	Channel center (nm)	1242	1608
Radiometric	Range	0 – 99% R	Bandwidth (nm,	22	56
	Sampling	14 bit	FWHM)		
	Calibration uncertainty	<2%	FOV (mrad, FWHM)	2.4	2.4
	Signal to Noise Ratio *	500 @ 450 nm	Boresight knowledge	0.05	0.05
	Polarization variation	<1%	(mrad, rel. to spectr.)		
Uniformity	Spectral cross-track	>95%	Sampling	13 bit	13 bit
	unitoritilly Spectrol IEOV unitermity	> OE0/	SNR @ 1.2 mW/cm ² sr	325	390
	Spectral IFOV uniformity	>90%			

PRISM Data Processing

orthorectification

- PRISM will complement ORCAS observations with hyperspectral measurements in the Southern Ocean, providing data products that are critical to :
 - 1. Improve understanding of biogeochemical processes in the Southern Ocean and their control on air-sea gas exchange (e.g., white caps, reactive trace gases and cloud droplet concentrations produced by marine biota)
 - 2. Test future ocean color satellite products and their atmospheric correction algorithms
 - 1. Provide synergy with a host of ancillary bio-optical and biogeochemical data from collaborative Southern Ocean projects
- Provide real-time radiance and reflectance analysis for immediate display and quality assurance during flight, as well as simple chl-a estimates for identification of biologically rich regions to inform tactical flight decisions

- Data will be processed to Levels 1-3 (radiance, reflectance, and chl-a) at JPL and archived/freely distributed by the PRISM team and NCAR EOL
- Collection of PRISM imagery in this region will allow for development of new algorithms, such as characterizing phytoplankton functional groups and selected phytoplankton taxa using the full hyperspectral data

AGL altitude (kft)

• Spatial resolution: ~8-9m

ORCAS Campaign: Flight Planning

40°S

48°S

4°S €4°S

72°S

80°S

110°W

85°W

60°W

Longitude

35°W

x 10

1.5

0.5

10°W mol m⁻³

Potential remote sensing flights:

- 1. Palmer LTER grid*
- 2. Drake Passage/Ona Basin*
- 3. Argentine Basin

Synergistic observations:

- 1. *R/V Gould Palmer LTER : ~1 Jan 1 Feb
- 2. *R/V Gould Drake Passage : ~3 Jan; 10-14 Feb

Time	Solar Zenith	Solar Azimuth		
	Angle	Angle		
08:00	29.1	77.8		
08:30	32.2	70.5		
09:00	35.1	62.9		
09:30	37.8	54.9		
10:00	40.3	46.5		
10:30	42.4	37.6		
11:00	44.2	28.3		
11:30	45.4	18.6		
12:00	46.2	8.6		
12:30	46.4	358.5		
13:00	46.0	348.4		
13:30	45.1	338.5		
14:00	43.7	328.9		
14:30	41.8	319.7		
15:00	39.6	311.0		
15:30	37.0	302.7		
16:00	34.2	294.8		
16:30	31.2	287.3		

Palmer LTER Grid Example

http://aa.usno.navy.mil/data/docs/AltAz.php

ORCAS Campaign: Flight Planning

Science flight time: 4 hr per box

ORCAS Campaign: Flight Planning

Science flight time: 4 hr per box

- Optimize chl-a quick look capabilities in the Southern Ocean for ORCAS
 - Comparison between Johnson algorithm and coincident MODIS, MERIS, SeaWiFS, and Palmer LTER chl-a
 - Johnson southern ocean correction improves a systematic underestimate in the standard approach

Johnson, R., et al. [2013], Three improved satellite chlorophyll algorithms for the Southern Ocean, J. Geophys. Res., 118, doi:10.1002/jgrc.20270.

NASA GMAO GEOS-5 real-time forecast support for ORCAS Example: <u>http://gmao.gsfc.nasa.gov/projects/SHOUT/</u>

