Aircraft and ship measurements in Drake Passage

Colm Sweeney Dave Munro

Global Perspective

Motivation

Lovenduski et al. (2008)

Increase in ΔpCO_2 driven by increase overturning which is primarily forced by increase in surface winds

Underway sampling 2002-2015

Surface TCO₂ at discrete locations

Total CO₂

SSTs at discrete locations

Surface Temperature

Drake Passage Measurements

- Underway (~18-24 crossing per year)
 - ADCP (since 1996)
 - Atmospheric CO₂, and Ocean CO₂ and O₂ (since 2002)
 - Atmospheric O₂ (since 2012)
- Discrete (6-8 crossing per year)
 - XBT/XCDT (since 1996)
 - TCO₂ measurements (since 2002)
 - Nutrients (PO4, NO3, SiO4) (Since 2005)
 - C-13 of TCO2 (since 2005)
 - C-14 of TCO2 (2006 2009)

- Total water column measurements (2006 and 2009)

Underway sampling 2002-2015

Trends

Arctic Deep Waters

Ocean Acidification

Stabilization of pCO_2 by deep wintertime mixing also stabilizes increase in CO_3^{2-}

Alaska Coast Guard (ACG) Aircraft Site

Temperature, RH, and Pressure

continuous CO₂/CH₄/CO, O₃, T, RH, P
24 Flasks (PFP) with > 50 species

*Thanks to Duane Kitzis, Pat Lang, Paul Novelli , E. Dlugocenky for tanks and flask analysis.

*Thanks to Jason Manthey for on-site operation.

Simple system for measuring CO₂

CARVE aircraft 2012

