NCAR Airborne Oxygen Instrument (AO2)

Flow control:

O₂ sensor

- Vacuum ultraviolet absorption technique
- Xe lamp (147 nm) and Csl detector
- Adapted from shipboard design (Stephens et al., 2003)
- Active pressure and flow control to 10⁻⁶
- Switches every 2.5 seconds between sample and WT gas
- 5-second 1-sigma precision of ± 2 per meg

NCAR Airborne Oxygen Instrument (AO2)

System components:

NCAR Airborne Oxygen Instrument (AO2)

Systematic offsets from HIPPO Medusa flask samples

• Introduction of a small amount of fractionated cabin air at the HIMIL inlet

- Drying of calibration lines and wetting of inlet lines during flight
- Flasks agreed very well with stations, so pinned to smoothed flask values
- Both issues will be addressed prior to ORCAS. Plan to verify in ARISTO

ARSV L.M. Gould Atmospheric O_2 / CO_2 System installed in June of 2012

ARSV L.M. Gould Atmospheric O₂ and CO₂ Latitudinal Gradients

