Reactive gas studies during ORCAS

AWAS: E. Atlas (U.Miami); S. Schauffler (NCAR) TOGA: E. Apel and B. Hornbrook (NCAR)

Scientific Motivations

- Emissions from productive Southern Ocean can have regional and global (?) impacts.
 - Reactive halocarbons and hydrocarbons
 - Oxidative processes / ozone depletion (tropospheric and stratospheric)
 - Aerosol formation
 - Organic nitrates
 - Marine origin/source of NOx
 - Sulfur species
 - DMS and aerosol formation
- Distributions and <u>fluxes</u> poorly characterized/or conflicting conclusions
 - Complex source/sink relationships
 - Mechanisms of production/loss also complex/variable
 - Limited information on links to biogeochemical processes
 - Pigments
 - Species dependence

HAIS Advanced Whole Air Sampler (AWAS)

- 60 total sample canisters: 5 modules with 12 canisters/module
- Each canister is ~ 1.1 liters and the interior surface is electropolished stainless steel
- 4 stage metal bellows pump
- Each sample pressurized to ~40 psi
- Sample fill time dependent on altitude. Range is 5 sec. in the boundary layer to 50+ sec at 49Kft
- A broad suite of trace gases are measured in each sample in the laboratory using multiple GC systems
- High sensitivity: detection limits of ppt to sub-ppt
- Altitude: surface 50,000 feet

Modules ready for installation.

HAIS Advanced Whole Air Sampler (AWAS) during laboratory tests. Bottom rack holds pump, electronics, and pneumatics for sample valves.

AWAS semi-automated field analytical system

HAIS Trace Organic Gas Analyzer (TOGA)

- Fast online GC/MS VOC measurement
- Up to 70 different VOCs measured
- High sensitivity: detection limits of NMHCs & OVOCs to ppt, many halocarbons to sub-ppt
- 35-sec integrated measurements every 2 min
- 14.5 cc sample volume up to 40Kft; pressure dependent lower volume above 40Kft
- Altitude: surface 50,000 feet

TOGA installed on GV

Figure 1. Diagram of the HIAPER/TOGA showing the major instrument components: (A) LN₂ dewar, (B) Heated space holding cryogenic enrichment traps and switching valves, (C) Mass spectrometer vacuum chamber, (D) Gas chromatograph, (E) Mass spectrometer, (F) Electronics box, (G) Zero air generator/dilution system, (H) Power box and UPS.

AWAS & TOGA provide complementary measurements of wide range of reactive gases

- Halocarbons:
 - Short-lived bromine and iodine compounds
 - Impact on ozone/oxidant chemistry & aerosol formation
 - CFC/HCFC/Halons (long-lived Stratospheric trend)
 - Solvents (ocean sink?)

• Non-methane hydrocarbons

- Reactive hydrocarbons (alkenes/isoprene)
 - Ocean emissions/impact on oxidation
 - Continental sources
- Organic nitrates
 - Ocean sources
 - Photochemical processes/bacterial influence?
 - Major NOy species
- Sulfur species
 - Mainly DMS (short-lived ocean emission)
- Oxygenated VOC
 - Oxidation products of other reactive HC
 - Ocean emissions/deposition?
- Source tracers (various)
 - Biomass burning (nitriles/halocarbons)
 - Combustion sources (light NMHC)
 - Anthropogenic (halocarbons/NMHC)

	Lifetime	Source	AWAS '	TOGA		Lifetime	Source	AWAS	TOGA
Oxygenates					Organic Nitrates				
Formaldehyde (CH2O)	1 day	A/N/B		~	Methyl nitrate(CH3ONO2)	~30 days	A/N	~	~
Acetaldehyde	1 day	A/N/B		~	Ethyl nitrate(C2H5ONO2)	~15 days	A/N	~	~
Propanal	1 day	A/B		~	Propyl nitrates(C3H7ONO2)	~11 days	A/N	~	~
Butanal	0.5 day	A/B		~	Butyl nitrates (C4H9ONO2)	~7 days	А	~	
Acrolein	1 day	A/B		~					
Methacrolein	0.5 day	Ν		~	Non-Methane Hydrocarbons				
Methyl Vinyl Ketone	1 day	N		~	Ethane (C2H6)	~73 days	А	~	
Methyl Butenol	0.5 day	N		~	Ethene (ethylene; C2H4)	~2 days	A/N	~	
Methanol	~20 days	A/N/B		~	Ethyne (acetylene; C2H2)	~22 days	A/B	~	
Ethanol	~4 days	A/N/B		~	Propane(C3H8)	~15 days	А	~	~
Acetone	~15 days	A/N/B		~	Isobutane(C4H10)	~ 7 days	А	~	~
Butanone	3 days	N/A/B		~	n-Butane (C4H10)	~ 7 days	А	~	~
Methyl t-Butyl Ether	3 days	А		~	Butene	hrs	A		~
	5				Isobutene	hrs	А		~
Methyl Halides and related					Isopentane (C5H12)	~ 4 days	А	~	~
Methyl Bromide(CH3Br)	0.8 vrs	A/N/B	~	~	n-Pentane (C5H12)	$\sim 4 \text{ days}$	A	~	~
Methyl Chloride (CH3Cl)	1.5 yrs	N/B	~	2	n-Hexane	~3 days	A	•	~
Methyl Iodide (CH3I)	$\sim 4 \text{ days}$	N	~	~	n-Heptane	\sim 3 days	A		~
Methylene Bromide(CH2Br2)	145 days	N	~	~	Isoprene (C5H10)	hrs	N	~	~
Bromoform (CHBr3)	~ 22 days	N	2	2	Benzene (C6H6)	~15 days	A/B	2	2
CHxBryClz	50-165 days	N	2	~	Toluene (C7H8)	\sim 3 days	A	~	2
Chlorojodomethane	hrs	N	1	~	Xylene	\sim 36 days	A	•	~
Dijodomethane	mins	N	•	~	Trimethylbenzene	hrs	A		~
Directometinine		11	V	•	Ethyl Benzene	~ 2.2 days	A		~
Solvents					a-Pinene	hrs	N		2
Carbon Tetrachloride (CCl4)	40 vrs	Δ	~	~	h-Pinene	hrs	N		2
Methyl Chloroform(CH3CCl3)	40 yrs	Δ	2	•	Limonene	hrs	N		2
Tetrachloroethylene (C2Cl4)	0.3 yrs	A	2	~	Camphene	hrs	N		2
Methylene Chloride (CH2Cl2)	0.3 yrs	Δ	2	2	Myrcene	hrs	N		2
Chloroform (CHCl3)	0.5 yrs	Δ	2	2	Myreene	шs			•
Trichloroethylene (C2HCl3)	-7 days	1		•	Helons				
1.2 Dichloroothono (C2H4Cl2)	$\sim 7 \text{ days}$	A .			CEC 12b1 (Halop 1211 CE2CIPr)	20 100	٨		
Chlorobenzene	0.25 yrs	A .			CEC-1201 (Halon 1211,CE2CIDI)	20 yrs	A		
Cinorobenzene	~20 days	A	•	•	CFC-114b2 (Halon 2402, C2E4Br2)	20 yrs	Δ		
Othen					CFC-11462 (11a10ii 2462, C2F4Bi2)	20 yrs	А	•	
Other									
Methane (CH4)	9 yrs	A/N	~		Hydrochlorofluorocarbons/				
Dimethyl Sulfide (C2H6S)	< 4 days	N	~	~	Hydrofluorocarbons				
Carbonyl Sulfide (COS)	30 yrs	N/A/B	~		HCFC-22 (CHF2Cl)	13 yrs	Α	~	
Hydrogen Cyanide (HCN)	1 yr	В		~	HCFC-141b (CH3CFCl2)	9.4 yrs	Α	~	
Acetonitrile (CH3CN)	2 yrs	В		~	HCFC-142b (CH3CF2Cl)	19.5 yrs	А	~	
					HFC-134a (C2H2F4)	14 yrs	А	~	
Chlorofluorocarbons					HFC-152a (F2HC-CH3)	1.5 yrs	А	~	
CFC-11 (CCl3F)	50 yrs	А	~	~	HCFC-124 (C2HF4Cl)	5.9 yrs	А	~	
CFC-12 (CC12F2)	102 yrs	Α	~		HCFC-21 (CHFCl2)	2 yrs	A	~	
CFC-113 (CCl2FCClF2)	85 yrs	Α	~						
CFC-114 (CClF2CClF2)	300 yrs	А	~	~					

AWAS/TOGA from CONTRAST

Benzene

Methyl bromide Dibromomethane Bromoform

Dichloromethane Chloroform Perchlorethylene

Background: Few Airborne Studies

ACE-1 (Blake et al.): Seasonal increase in marine emissions from Nov – Dec (mostly lowest 2 km): Halocarbons, MeONO2, DMS

PEM-Tropics: RONO₂ high in tropics <u>and</u> Southern Ocean atmosphere

Figure from Neu et al., GRL, 2008.

HIPPO mission: Seasonality and large scale distributions (example from HIPPO-3; March/April 2010)

Boundary Layer/Ocean Studies

- Numerous cruises + Antarctic station studies
- Some of the main factors on reactive gas distributions (focus on halocarbons):
 - Ice algae and melting sea ice sources
 - Plankton size/species distributions
 - Coastal vs offshore differences
 - Variable relationship to primary productivity and associated factors
 - Pigments, etc.
 - Bacterial modification
 - Halogen specific effects
 - Role of transport

Uncertain and variable fluxes (nmol m⁻² day⁻¹)

LOCATION/SEASON	CH ₃ I	CH ₂ ClI	CHBr ₃	CH ₂ Br ₂	Reference
40 – 52 S., Atlantic, Sept. – Feb.	6 (0 – 20)	-1 (-3 – 5)	-40 (-567)		Chuck et al., 2005
Southern Ocean Feb-April	17 (0.4 – 9.8)		5.4 (-7.6 – 32)	7.5 (-3.4 – 24)	Butler et al.,2007
70 – 72 S, Coast Dec/Jan			32.3 (1 – 100)		Carpenter et al., 2007
Ryder Bay, 67 S Ice-free conditions			107 (-13 – 353) Bloom 34 (-49 – 227) non bloom		Hughes et al., 2012
Ross Sea/Amundsen Sea; Dec/Jan		SA*: -6 – 1200% (source)	SA*: -83 – 11% (sink)		Mattson et al., 2012
Sea Ice Dec/Jan		SA*: 91 – 22000% (source)	SA*: -61 – 97% (source and sink)		Mattson et al., 2012
Drake Passage; Dec/Jan.			-16 (-48 – 2)		Mattson et al., 2013
Antarctic Sea Ice edge, Dec., Jan			-10 (-72 – 24)		Mattson et al., 2013.
Southern Ocean (combined data) Dec/Jan.			-8 (-20 – 1)		Mattson et al., 2013
Marguerite Bay, Summer season			84 (-13 – 275)	21 (2-70)	Hughes et al., 2009
Southern Ocean (model),DJF			~ 7 (median)		Stemmler et al., 2014
Southern Ocean (model), Annual	~4.8 (est)		~-4.8 (est.)	4.8 (est.)	Ziska et al., 2013.

Bromoform in air and water: role of transport

Bromoform saturation anomalies. Yellow = supersat'd; Red = undersat'd

Air concentrations and back trajectories; White indicates seaice extent

Water concentrations and average monthly Chl a (December)

OOMPH cruise: DMS, CH3I and Chla

Argentina): Good correlation between gases in atmosphere, but little consistent correlation to Chl a. Improved correlation considering back trajectories over productive areas (from retrospective satellite obs.)

Proposed main objectives

- 1) Define the chemical distributions of reactive trace gases as a function of altitude and geographical location around the Southern Ocean;
- 2) Evaluate the chemical emissions from different potential source regions during the Austral Summer;
- 3) Evaluate procedures to combine observations and modeling to constrain the magnitude and direction of trace gas fluxes in the Southern Ocean during the peak time of biological productivity;
- 4) Examine potential application of remote sensing data to more accurately characterize trace gas fluxes and extrapolate to other ocean regions.

Questions related to main ORCAS objectives:

- What are the vertical distributions and geographical variations of halocarbon and other reactive gases around the Southern Ocean?
- Can the combination of aircraft profiles and Lagrangian transport models effectively quantify the fluxes of halocarbons and other reactive gases from different regions over the Southern Ocean?
- What is the relationship of halocarbon fluxes and distributions to those of CO₂ and O₂?
- What are the trace gas signatures of sources from coastal Antarctica vs Southern Ocean?
- What are the relative importance of emissions of halocarbons near the retreating ice edge versus the nearshore and open ocean environments vs the Argentine Basin?

Questions related to main ORCAS objectives:

- Can quantitative relationships be established between halocarbon fluxes and observations of ocean hyperspectral features?
- What are the main source regions of organic nitrates in the Southern Ocean atmosphere and how are they related to reactive halocarbons or other biogeochemical variables?
- Are the observations of reactive gases consistent with existing model formulations (e.g. CAM-CHEM, etc.)?
- Can the relationships developed for trace gas emissions be translated/extrapolated to other productive ocean regions?