STILT modeling: Flight planning and analysis

Eric Kort, University of Michigan Et al.

Atmospheric modeling component of ORCAS

- STILT: Stochastic Time-Inverted Lagrangian Transport model
- Use wind fields (forecast, reanalysis, modeled) to drive. Release air parcels (100s – 1000s) which stochastically sample turbulence and can move forwards or backwards in time.
- Been used extensively in regional aircraft campaigns & quantifying fluxes (over land)
- Key feature: links atmospheric observation with upwind sources/sinks

CARVE Polar-WRF/STILT Receptor – Footprint Simulation 500 Particles, 10-day Back Trajectories

How will this be used for ORCAS

2 Modes

- Flight Planning, possibilities
 - Lagrangian Flight strategies
 - Determine Air Origin/surface regions of influence
 - Predict Location of specific event plumes (say, upwelling?)
- Post-mission analysis
 - Link observations with Fluxes (and Flux drivers)

Determining air origin

Longitude

Forecasting location an event would appear (Forward modeling)

Post-mission analysis

- Quantifying fluxes & linking to drivers
 - Using all campaign data
 - Using lagrangian flight data
- Valuable for analysis
 - Upwind values
 - Modeled fluxes
 - Expected drivers for fluxes

All campaign footprint

Optimize fluxes (or important driving auxiliary variables) to match observations

