

Use of multi-tracers simulations for characterizing transport models (TransCom-HIPPO?)

Prabir Patra, Steve Wofsy, Britton Stephens et al.

Presented at HIPPO workshop 2012

12-13 Mar 2012 NOAA/ESRL, Boulder, USA

Research Institute for Global Change

Introduction

- Uncertainties in transport model impede use and interpretation (inversion) of atmospheric observations
- We believe use of multi-tracers is critical to separate errors associated with surface fluxes and model transport
- HIPPO transects and seasonal measurements provide unique opportunity to characterize transport model properties

Scheme of GHGs Simulation in ACTM (Patra et al., 2009)

Model: CCSR/NIES/FRCGC Atmospheric General Circulation Model (AGCM)

Meteorology: ECMWF/NCEP/JMA for the period 1980 – 2011 is nuddged at relaxation time of 1-5 day for U, V, and T

Gases: CO₂, CH₃CCl₃, CH₄, CFC-12, N₂O, SF₆, ²²²Rn

Tracers:

- 1. CO2a: CASA biosphere + Takahashi Ocean + Fossil Fuel
- 2. CO2b: TransCom inversions + Fossil Fuel
- 3. CO2c: HiRes (TDI-64/ACTM) cyclostationary + Fossil Fuel
- 4. CO2d: TDI-64/ACTM + TDI-64/CTME IAV + Fossil Fuel

Nembers:

Prabir Patra Kentaro Ishijima Kazuyuki Miyazaki Ryu Saito

- 5. CH₄: EDGAR Anthropogenic + GISS/VISIT Natural (simple OH chemistry, O¹D, Cl)
- 6. CH₃CCl₃: McCulloch/Krol (OH, O¹D chemistry; Photolysis, oceanic sink)
- 7. N₂O: EDGAR terrestrial + Ocean model (O¹D, Photolysis)
- 8. CFC-12: EDGAR-86 + AFEAS modified for trends (O¹D, Photolysis)
- 9. SF₆: EDGAR + Univ. Heidelberg/Levin (for trends)
- 10. Radon: annual mean flux (simple decay)
- 11. Radon: monthly mean flux

Updated from Gakujutsu Sousei Meeting CAOS, Tohoku University; 28 Jun 2006

Atmospheric transport of greenhouse gases (GHGs) in the CCSR/NIES/FRCGC AGCM-based Chemistry Transport Model (ACTM)

Patra et al., ACP, 2009

ACTM simulations of CH₄ and CH₃CCl₃

Patra et al., JMSJ, 2009

Carbon balance of South Asia constrained by passenger aircraft CO₂ measurements (Patra et al., ACP, 2011)

CONTRAIL and ACTM/CARIBIC CO₂ over Delhi, India: Role of fluxes on vertical profile simulation

TransCom CH₄ : linking chemistry, transport & emission

Participating transport models and model variants in TransCom-CH₄ intercomparison (1990-2007)

Sl. No.	Model name ^a	Institution ^b	Resolution		Meteorology ^e
			Horizontal ^c	Vertical ^d	
1	ACCESS	CSIRO	$3.75 \times 2.5^{\circ}$	38	AGCM; SST
2	ACTM	RIGC	$\sim 2.8 \times 2.8^{\circ}$	67σ	NCEP2; U, V, T; SST
2a	ACTM_OH ^{\$}	RIGC	$\sim 2.8 \times 2.8^{\circ}$	67σ	NCEP2; U, V, T; SST
3	CAM	CU	$2.5 \times \sim 1.9^{\circ}$	28σ	NCEP/NCAR
4	CCAM	CSIRO	\sim 220 km	18σ	NCEP; U, V; SST
5	GEOS-Chem	UoE	$2.5 \times 2.0^{\circ}$	$30/47\eta$	NASA/GSFC/GEOS4/5
5a	GEOS-Chem_DOH	UoE	$2.5 \times 2.0^{\circ}$	$30/47\eta$	NASA/GSFC/GEOS4/5
6	IMPACT	LLNL	$5.0 \times 4.0^{\circ}$	55η	NASA/GSFC/GEOS4
6a	$IMPACT_1 \times 1.25$	LLNL	$1.25 \times 1.0^{\circ}$	55η	NASA/GSFC/GEOS4
7	LMDZ	LSCE	$3.75 \times 2.5^{\circ}$	19η	ECMWF; U, V, T; SST
8	MOZART	MIT	$\sim 1.8 \times 1.8^{\circ}$	28σ	NCEP/NCAR
9	NIES08i	NIES	$2.5 \times 2.5^{\circ}$	32σ - θ	JCDAS, ERA-interim-PBL
10	PCTM	GSFC	$1.25 \times 1.0^{\circ}$	58η	NASA/GSFC/GEOS5
11	TM5	SRON	$6.0 \times 4.0^{\circ}$	25η	ECMWF, ERA-interim
11a	$TM_5_1 \times 1$	SRON	$1.0 \times 1.0^{\circ}$	25η	ECMWF, ERA-interim
12	TOMCAT	UoL	$\sim 2.8 \times 2.8^{\circ}$	60η	ECMWF, ERA-40/interim

List of 8 surface sites used in TransCom-CH₄ analysis

Station name & location	Data network & managing institution		
ALT, Alert, Canada;	NOAA: Global Monitoring Division, ESRL		
62°W, 82°N, 210m	(Edward Dlugokencky; James Elkins)		
BRW, Point Barrow, USA;	NOAA: Global Monitoring Division, ESRL		
157°W, 71°N, 11m	(Edward Dlugokencky; James Elkins)		
MHD, Mace Head, Ireland;	AGAGE: University of Bristol		
10°W, 53°N, 25m	(Simon O'Doherty; Peter Simmonds)		
MLO, Mauna Loa, Hawaii, USA;	NOAA: Global Monitoring Division, ESRL		
156°W, 20°N, 3397m	(Edward Dlugokencky; James Elkins)		
RPB, Ragged Point, Barbados;	AGAGE: University of California, San		
59°W, 13°N, 45m	Diego (Ray Weiss)		
SMO, Samoa, USA;	AGAGE: University of California, San		
171°W, 14°S, 42m	Diego (Ray Weiss)		
CGO, Cape Grim, Australia;	AGAGE: Commonwealth Scientific and		
145°E, 41°S, 94m	Industrial Research Organization		
	(Paul Fraser, Paul Steele; Paul Krummel)		
SPO, South Pole, Antarctica;	NOAA: Global Monitoring Division, ESRL		
25°W, 90°S, 2810m	(Edward Dlugokencky; James Elkins)		

TransCom-HIPPO intercomparison expectations

2. Multiple species – our best bet to disentangle flux and transport model errors in forward simulations

3. OH in two hemispheres : (critical for CO, NO_x, SO_x inversions)

TCOM OH : NH/SH = 0.99			
(σ_{press} =1.0-0.1)			
ACTM OH : NH/SH = 1.32			

4. Others :

Possible Target species of TransCom-HIPPO

- Carbon cycle science:
 - CO₂ (modelers choose their preferred fluxes too many options to choose from; inversion fluxes should be without HIPPO data)
 - O₂/N₂ (flux: SIO/Keeling makes one set)
 - OCS (flux: UEA/Suntharalingam & ESRL)

(wish list)

- Atmospheric chemistry and climate
 - CH₄ (flux: RIGC/Patra makes two sets; prescribed chemistry)
 - H₂ (flux: RIGC & ESRL; prescribed chemistry)
 - CO (flux: WuR/Krol & GEOS-Chem; prescribed chemistry)
- N₂O (flux: RIGC; prescribed chemistry)
- Halocarbons
 - CH₃CCl₃ (flux: WuR/Krol makes one set; prescribed chemistry)
 - CFC-12 and others (flux: RIGC & ESRL make one set; prescribed chemistry)
 - HCFC-22 and others (flux: RIGC & ESRL make one set; prescribed chemistry)
- Model transport validation
 - SF₆ (flux: RIGC & ESRL makes one set; no chemistry)
 - ²²²Radon (flux: available standard; radioactive decay time)

Period of simulation

- 1995 2011
 - 1995-2004 spin-up for establishing stratospheretroposphere transport and photo-chemical equilibrium for most species
 - 2009-2011 analysis

• Other?

Model output

- Monthly-mean/daily-noon on constant pressure surfaces: 2005-2011 (standard: 1000-10 mb)
- 3-hourly output for the 5 HIPPO months (standard pressure: 1000-100 mb)
- Profile sampling along the HIPPO tracks (fortran program will be provided)
- Hourly model output at a selected (100 odd) surface stations
- 3D file format is NetCDF and sampling location as ASCII?
- Other issues?

Some additional thoughts

APPLICATION OF HIPPO AND MODEL FOR INTERPRETING REMOTELY SENSED TOTAL COLUMNS

Comparison of ACTM simulations with TCCOM

Bias, RMSE and Correlation coefficient

TCCON and ACTM seasonal cycles

(amplitudes overestimated at d. GAR, f. LAM, i. IZO)

Saito et al., ACPD, 2012

What's in the total column values?

Saito et al., ACPD, 2012

Why are the troposphere and stratosphere so different?

Harnisch et al., GRL, 1996; Patra et al., JGR, 1997; Patra et al., ACP, 2009; Saito et al., JGR, 2011

Reconstruction of tracer (CO₂) profiles from 'age of air'

