Overflight of Global Hawk and the GV during HIPPO and GloPac along with satellite intercomparisons

J.W. Elkins¹, J. D. Nance^{1,2}, F. L. Moore^{1,2}, E. J. Hintsa^{1,2}, S. J. Oltmans^{1,2}, L. Patrick^{1,2}, R.S. Gao¹, S. C. Wofsy³, E. Kort³, B. C. Daube³, and E. Ray^{1,2}

> ¹NOAA/ESRL ²CIRES, CU ³Harvard University

$N_2 O vs CH_4$

Aircraft data from GloPac RF02-20100413 and HIPPO-3 RF09-20100413 along MLS comparison transect.

Tuesday, June 19, 2012

Selected Aura-MLS N_2 O Profiles from 2010-04-14 (Hour 0) with N_2 O measured from nearby NASA Global Hawk during GloPac RF02 and NSF/NCAR Gulfstream V during HIPPO-3 RF09

Selected Aura-MLS O_3 Profiles from 2010-04-14 (Hour 0) with O_3 measured from nearby NASA Global Hawk during GloPac RF02 and NSF/NCAR Gulfstream V during HIPPO-3 RF09

Region of stratospheric penetration highlighted solid. Ozone-depleted stratospheric region highlighted green, red.

1 Hz QCLS-N₂O, 2 Hz NOAA-O₃ reduced to 1-minute averages

Ozone loss of between 0.5 and 0.7 ppm

P. Newman (NASA), E. Nash (SSAI), S. Pawson (NASA)

CLaMS Model Simulation for 7 April 2010 (450K ~ 17 km)

CLaMS Accumulated Ozone Loss since | Dec 2009

Conclusions

- Overflight of the Global Hawk over the GV during HIPPO/3 produced similar tracertracer relationships with structure.
- There was a good agreement of common tracers from different instruments on two aircraft and one satellite instrument.
- Breakup of the polar vortex with low ozone during HIPPO/3 and GloPac was observed in filaments.
- Agreement of ozone loss between ozone loss and model simulation.