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Publications Update

Completed

Varble, A., M. Stanford, E. Zipser, J. W. Strapp, J. Delanoe, A. Korolev, D. Leroy, R. Potts, A. Protat, and A. Schwarzenboeck, 2015: Observed and simulated
relationships between tropical deep convective updraft dynamics and microphysics, AGU Fall Meeting poster.

Varble, A., M. Stanford, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, A. Korolev, M. Wolde, J. Delanoe, A. Protat, and R. Potts, 2016: Disentangling
dynamical and microphysical causes of tropical convective precipitation biases in high-resolution simulations, AMS Conference on Hurricanes and Tropical
Meteorology, talk.

Stanford, M. and A. Varble, 2016: Evaluation of simulated tropical convective updraft properties using HAIC-HIWC aircraft observations, AMS Conference on
Hurricanes and Tropical Meteorology, poster.

Planned

Stanford, M., A. Varble, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, A. Korolev, and R. Potts: Evaluating simulated tropical convective cores using
HAIC-HIWC microphysics and dynamics observations. Poster at AGU Fall Meeting in December 2016.

=> Stanford, M., A. Varble, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, and R. Potts: Evaluation of simulated tropical convective updraft hydrometeor
properties using aircraft observations (manuscript based off of McKenna’s recently completed Master’s thesis to be sent to coauthors December 2016).

Varble, A., M. Stanford, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, A. Korolev, M. Wolde, and possibly others: A comparison of simulated and
observed ice microphysical properties in tropical mesoscale convective systems (manuscript to be written in 2017).

The above two planned manuscripts replace Article #32 (first is based on Darwin data and second incorporates Cayenne data).

Varble, A., M. Stanford, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, A. Korolev, M. Wolde, and possibly others: Reducing bulk microphysics
parameterization biases using HAIC-HIWC field campaign measurements (Article #70 manuscript to be written in 2017)

Varble, A., M. Stanford, E. Zipser, J. W. Strapp, D. Leroy, A. Schwarzenboeck, A. Korolev, M. Wolde, A. Protat, J. Delanoe, and possibly others?: Factors
influencing the evolution of high ice water content regions in tropical mesoscale convective systems (Article #30 manuscript to be written in 2017-187?).



High Biases in Radar Reflectivity

Cloud models can help to explain the ways that high IWC regions form and how they
evolve in different situations. However, radar reflectivity biases are common in deep

convective simulations and result from:
1) Overly large and intense convective updrafts that loft excessive condensate above the

freezing level (Varble et al. 2014 — TWP-ICE results shown below)
2) Biases in the parameterization of microphysics
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Hydrometeor Size Contribution to Bias

Controlling for TWC and w, are simulated sizes larger than observed?
e TWC-IKP2 (Strapp et al., 2016)

e PSD (MSD) - 2D-S & PIP (Leroy et al., 2016a)
* Linearly weighted composite PSD using both OAPs

* Constrained mass-size distributions using IKP2
e w —calculated by SAFIRE

>

A
Hydrometeor size comparisons are performed by way §
of percentiles of the MSD for observations and can be : :
calculated for microphysics schemes : S0 : S0
 MMD l :

e 90% MD See Leroy et al., 2016a,b for further detail on 107: MD MMD  90% MD

MD computations from HAIC-HIWC .
* 10% MD Diameter (D)
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Models

Focus is on 18 Feb. 2014 (Flight 23) simulation. Similar results in TWC-w-T-MD space
from simulations of 23. Jan (Flight 6), 2-3 Feb. (Flights 12 &13 ), and 7 Feb. (Flight 16).
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Microphysics Schemes

Bulk Schemes
Assume PSD functional form (typically Gamma) and predict integral moments of PSD
1M: prognostic mass mixing ratio (q)
2M: prognostic g & number concentration (N)

Bin Schemes
Predicts N for discrete size bins—assumes no functional form (advantage)
Much more computationally expensive than bulk schemes (disadvantage)

Thompson: 1M - snow, graupel, cloud water; 2M - rain & cloud ice
Morrison: 1M - cloud water; 2M - snow, graupel, cloud ice, & rain
FSBM: 33 mass (size) doubling bins for vapor-grown ice/aggregates, graupel, liquid, and
aerosols




Intercomparison Methodology

e Controlling for temperature, condensate mass, and vertical velocity, are
simulated hydrometeor sizes larger than observed?

Simulation Dataset Observational Dataset
1. 6-hour active time period 1. All Darwin flights
2. 1000-m grid spacing (also 2.~750-m grid spacing

have 333-m domain for 18
February event w/
Thompson scheme)



Establishing the reflectivity bias for this case

90 Percentile Reflectivity

Altitude [km]
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Temperature [°C]
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Observed MMD-T-w~-TWC Relationships
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Temperature [°C]

Temperature [°C]

Simulated MMD-T-w~TWC Relationships
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Temperature [°C]

Simulated vs. Observed T-u~TWC

Thompson - Observations Morrison - Observations FSBM Observatlons
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* All schemes produce lesser TWC than observed for -30°C<T<-50°Cand w<8 ms

with greater than observed TWC for larger w and warmer T.

* Some of this difference could be caused by biased observational sampling, but some of it
is also likely related to overproduction of fast-falling, large rimed ice in simulations.

Simulated - Observed TWC

Relative Difference [%]



Simulated vs. Observed MMD-T-w
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 Morrison & FSBM produce much larger than observed MMDs for most w-T bins.
 Thompson produces smaller MMDs for -30°C< T < -50°C and w < 10 m s, but larger MMDs
at warmer T and higher w.

Relative Difference [%]



Temperature [°C]

Simulated vs. Observed MMD-T-TWC

Thompson - Observations Morrison - Observations FSBM Observahons
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Simulated - Observed MMD

For a given w-T or TWC-T bin, both Morrison & FSBM schemes produce larger than observed
MMDs.

Thompson produces a smaller size mode for colder T, smaller w, and smaller TWC, but still
exaggerates ice sizes for larger TWC and w conditions.

Relative Difference [%]



Temperature [°C]

Definitive Model Bias — Minimum 90% MDs

Thompson - Observations Morrison - Observations FSBM Observa’uons
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Simulated - Observed Min. 90% MD

Simulated sample sizes are ~ 103 larger than observed and the most intense cells were
avoided during flights; thus, we expect simulation phase space to be greater than
observations phase space.

Instead, TWC-T bins exist where no single scheme produces 90% MDs as small as those
observed (evervwhere there are blue bins).

Relative Difference [%)]



10% MD [mm]

Composite MD(w) for -32 °C<T<-40°C
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Morrison & FSBM exceed observations across all MSD percentiles

Thompson 10% MDs are smaller than observed and MMDs are remarkably similar for w <

10 m s, but very large size mode exists at larger w for MMD and for all w for 90% MD.



10% MD [mm]

Composite MD(w) for -8 °C< T <-16 °C
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Few samples for these temperatures, so conclusions are difficult (Cayenne data will help)
Differing slopes in 90% MD-w profiles suggest far different proportioning of ice size and/
or mass between graupel and snow particles in different schemes
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Reflectivity Implications
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Reflectivity Implications
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Context from Cayenne Falcon 20 Measurements

For high TWC at warm T, Cayenne & Darwin

PSDs & MSDs are similar.
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Context from Cayenne Falcon 20 Measurements

Cayenne observations have fewer large 32 oc t 4ooc Although not shown, updrafts don’t have
: : - O - e ) :
particles and mass at larger diameters, significantly more particles than all regions
perhaps because of smaller, weaker updrafts. -3 -3 for this TWC and T range.
Sample size differences could also play a role. 2 g m S TWC S 25 g m
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Conclusions

* Simulated hydrometeor sizes are larger than observed, and the contribution of different ice species to the
high bias varies by scheme and temperature range

* This results from assumed hydrometeor properties (m-D relationships, Gamma PSD parameters) as
shown by the large differences between schemes, but also likely results from key errors in mixed-phase
microphysical process parameterizations that favor large rimed ice over small vapor-grown ice as shown
by similar biases in all schemes

 2M schemes do not appear to perform better than diagnostic 1M schemes, even though they more
realistically represent physical processes; the bin scheme should be able to perform the best, but only
performs better in select metrics

* All schemes place too much mass in larger particle sizes than observed, which high biases radar reflectivity
for a given T-w-TWC condition

* Although not shown, increasing grid spacing to 333 m only slightly improves results and does not significantly
reduce model bias

e Also not shown, simulated hydrometeor sizes in a T-w-TWC phase space are largely the same for bulk
simulations of several other HAIC-HIWC Darwin events varying in thermodynamic and kinematic structure



Future Work

Utilize additional TWC and MSD data from NRC Convair 580 (w/Alexei)

* Falcon 20 & Convair during Cayenne phase provide much more information around -10 to -15
°C than was collected during the Darwin campaign

Utilize X-band airborne radar data for select Cayenne cases (w/Mengistu)
Simulate select Cayenne cases
* Possibly test novel new microphysics schemes in WRF
Explore microphysical pathways to increase ice number concentrations in microphysics schemes

Explore the life cycle of high ice water content regions and their relationship with convective and
mesoscale circulations (w/anyone interested)
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influencing the evolution of high ice water content regions in tropical mesoscale convective systems (Article #30 manuscript to be written in 2017-187?).



Temperature [°C]

Thompson 333-m simulation, 18 Feb. 2014
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e Largest reduction in MMD results from a reduction in GWC (and consequently graupel
MMDs) since GWC largely controls TWC in this temperature region
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* Increasing resolution decreases updraft size, allowing easier sedimentation of large ice, but
MMDs for a given TWC-T changes little (TWC decreases rather than MMD for a given TWC)

333m - 1000m Relative Difference [%]



Composite Distributions in Updrafts
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Composite Distributions in Updrafts
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At colder temperatures,

total number of particles

in updrafts are only

slightly higher than for no

w constraint

 Slight increase in
number
concentration is
mostly from large
particles

More mass is distributed

at larger particles in

updrafts

Reflectivities slightly

increase in updrafts



Context from Cayenne Falcon 20 Measurements
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Context from Cayenne Falcon 20 Measurements
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Species Partitioning - Snow
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FSBM & Thompson
produce much more
snow than Morrison—
smaller MMDs -
slower fall speeds
Morrison snow
aggregates get very
large near melting level
—contribute to
reflectivity bias

Unique Thompson
Snow parameterization
(temperature
dependent double
gamma) & non-
spherical m-D
relationship is more
agreeable with obs



Temperature [°C]

Temperature [°C]

Species Partitioning - Graupel
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Morrison
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Thompson graupel-hail
hybrid species forces
particles to larger sizes
with increasing mass
Morrison graupel
MMDs are smaller than
snow—2M graupel may
reduce size biases
compared to 1M
diagnostic relationships
FSBM graupel is
smallest of all schemes
and smaller than FSBM
snow — small graupel
may be linked to size of
lofted raindrops &
amount of available
supercooled liquid
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Temperature [°C]

Species Partitioning - Liquid

Thompson Morrison FSBM
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Thompson & Morrison
schemes produce much
more supercooled liquid
than FSBM
Less supercooled liquid
and smaller raindrops in
FSBM may be a cause
for smaller graupel sizes
* Potentially caused
by explicit CCN
nucleation and
maintenance of
supersaturation
over liquid



