

NRC Research Update

M. Wolde¹, C. Nguyen¹, K. Baibakov¹, A. Korolev², P. Gabriel³

¹National Research Council Canada, Ottawa, Canada ²Environment and Climate Change Canada, Toronto, Canada ³General Analytics L.L.C., Halifax, Canada

HAIC-HIWC Science Team Meeting, 05-09 Dec, 2016, Capua, Italy

National Research Conseil national de Council Canada recherches Canada

Environment Canada Environnement Canada

Outline

NRC Convair instrumentation and Flights during the 2015 HAIC-HIWC
 Cayenne Flights

- IWC from radar
 - Near-coincident measurement
 - within few hundred meters from the aircraft radar and in-situ
 - Attenuation
 - Reflectivity based
 - Multi-frequency and multi-parameter
- Lidar in HIWC
- GVR in HIWC

NRC Convair-580 Instrumentation during the HAIC-HIWC 2015 Cayenne mission

Over 40 in-situ and remote sensing (radars, LIDARs and radiometer) systems were integrated on the NRC Convair-580 for the mission – allowing unprecedented dataset for characterization of high altitude icing environment that is being used for regulatory as well as science objectives

Environnement Canada

ironment

NRC Convair-580 flights during the HAIC-HIWC 2015 Cayenne mission

Conducted 14 flights inside MCSs - in both continental and maritime convective systems

In-situ sampling at -17 °C< T < -3°C, with mostly conducted horizontal transects at ~ -10° C.

Canada

Environnement

Environment

Canada

Convair-580 Flights - In-situ cloud microphysics data summary

Environment Canada Environnement Canada

Median mass size vs. IWC

Median mass size decreases with increase of IWC approaching to MMD~500 μ m and IWC>1.5g/m³

Distribution of MMD in different IWC ranges -15C < T < -5C

Dual-Pol - NAWX

W band: pale yellow X-band: green

	X-band	W-band
RF output frequency	9.41 GHz +/- 30 MHz	94.05 GHz
Peak transmit power	25 kW magnetron split between two ports	1.7 kW typical
Transmit polarization	H and V	H or V
Maximum Pulse Repetition Rate	5 kHz	15 kHz
Antennas	Side: 1 x 26" dual- pol Nadir/Zenith: 2 x 18" single-pol	Side/Aft: 2 x 12" dual- pol Nadir/Zenith: 1 x 12" single-pol

NAWX - IWC vs. Z

All

T:-5C T:-10C IWC - Z (9.4 GHz), # points : 35700 IWC - Z (9.4 GHz), # points : 2234 IWC - Z (9.4 GHz), # points : 19054 fitting parameters: (0.24851 0. 2894) fitting parameters: (0.25787 0.39142) fitting parameters: (0.25383 0.59647) 0.9375 (b) 0.9375 (C) 0.9375 (a) 3.5 0.875 3.5 0.875 3.5 0.875 0.8125 0.8125 0.8125 0.75 0.75 0.75 0.6875 0.6875 0.6875 2.5 2 (6/m³) 1.5 2.5 2 (g/m³) 1.5 (_Em/g) 0.625 0.625 0.625 0.5625 0.5625 0.5625 0.5 0.5 0.5 TWC 0.4375 0.4375 0.4375 0.375 0.375 0.375 0.3125 0.3125 0.3125 0.25 0.25 0.25 0.1875 0.1875 0.1875 0.5 0.125 0.5 0.125 0.5 0.125 0.0625 0.0625 0.0625 0 0 10 30 30 -20 -10 0 -20 -10 0 10 20 -20 -10 0 10 20 30 Reflectivity (dBZ) Reflectivity (dBZ) Reflectivity (dBZ) IWC - Z (94 GHz), # points : 1473 IWC - Z (94 GHz), # points : 14 67 IWC - Z (94 GHz), # points : 6924 fitting parameters: (0.17455 fitting parameters: (0.16722 0. 1222) 0.48255) % fitting parameters: (0.17941 0.68018) 0.93 (d) 0.9375 (e) 0.9375 (f) 3.5 3.5 0.87 0.875 3.5 0.875 0.8125 0.81 0.8125 0.75 3 0.75 0.75 0.68 0.6875 0.6875 2.5 2 (g/m³) 1.5 (g/m³) 2.5 0.62 0.625 (_Em/b) 0.625 0.56 0.5625 0.5625 0.5 0.5 2 0.5 0 A L 1.5 TWC (0.4375 0.43 0.4375 0.37 0.375 0.375 0.31 0.3125 0.3125 0.25 0.25 0.25 0.18 0.1875 0.1875 0.12 0.5 0.125 0.5 0.125 0.0625 0.06 0.0625 0 30 -20 -10 0 10 30 -20 -10 0 10 20 30 -20 -10 0 10 20 Reflectivity (dBZ) Reflectivity (dBZ) Reflectivity (dBZ)

X-band – IWC < 2 g m⁻³ for Z > 20 dBZ – bifurcation in IWC vs. Z

Environment Environnement Canada Canada

NRC·CNRC

May 23 - IWC from Z_e

Side-looking W-band

Side-looking X-band

Flight level – in-situ vs. IWC from Z_e

ment Environnement Canada

May 23 - IWC from Z_e

IWC from W-band Z_e

IWC from X-band Z_e

IWC_x - IWC_w

Environment Environnement Canada Canada

Case Study – May 23

 Correlate in-situ cloud microphysics data with radar responses (both dual frequency research radar and pilot weather radar)
 Horizontal and vertical reflectivity variabilities

23-May 2015 Flight

- HIWC in segments with MMD < 500 µm (A)</p>
- IWC < 0.5 g m-3 in cloud segments with MMD > 1 mm (B)

NCCNCC

*

Environment Envi Canada Cana

Environnement Canada NRC·CNRC

NAWX - Z (23-May-2015)

Attenuation and different scattering regimes at W-band in HIWC conditions

NRC·CNRC

DFR – 15-May Flight

DFR – 15-May Flight

NRC·CNRC

Polarimetric method for IWC retrieval

Method for estimation of K_{dp}

60

0 2 4 6 8 10 12 14 16 18 Range (km)

NRC·CNRC

IWC retrieval from X-band side reflectivity

Mapping Zx and IWC(Kdp) to PWR

IWC(K_{dp}) for X-band, May 23 case

NCCNCC

K_{dp} and Z_{dr} relationship in HIWC environment

Approximation:

 K_{dp} and Z_{dr} highly depend on the particle shape whereas at low temperature their ratio does not an is determined only by the mass of t particle.

IWC(K_{dp}, Z_{dr}) for X-band, May 20 case

NRC·CNRC

May 05 - Convair Transit Flight

May 05 – NAW LDR

NRC·CNRC

20150527am-095436-114356

Ongoing work

- Improve Kdp estimates.
- ✤ IWC (Kdp, Zdr) and IWC (Kdp, Zdr, T).
- W-band polarimetric radar signatures of HIWC environment.
- Dual-frequency (X and W-band) analysis.
- Feasibility study of IWC detection and estimation algorithm for real-time application.

LIDAR in HIWC

Convair Lidars

➤Wavelength: 355 nm, for eye safe operation.

- Horizontal resolution: 20 profile per second.
- Vertical resolution: up to 0.75 m (200MHz sampling rate).
- Depolarization measurements: supercooled water and ice separation.
- High and low gain channels to avoid in cloud signal saturation.
- Measurements extend close to aircraft.

Zenith and Nadir-looking
Two independent systems

NC.CNC

Test case May 27, 2015 – Entering into a HIWC cloud

AECL backscatter and depolarization signatures allow to identify liquid and glaciated layers

In HIWC AECL signal is mostly extinguished in the first 200m

NAW shows a melting layer at 4.5 km. Maximum reflectivity (~18 dBZ) is achieved in HIWC region (~11:14-11:15) above the melting layer

NRC·CNRC

Test case May 27, 2015 – Lidar vs in-situ extinction

AECL extinction profiles were retrieved using Klett inversions (LR = 20)

AECL extinction values taken at 50m and scaled by ~4 show an excellent agreement with in-situ measurements

NCCNRC

Lidar-based estimations of IWC

 Lidar-only retrievals from extinction
 (κ) parametrization (e.g. Heymsfield et al, 2005, 2014)

 $IWC = a\kappa^b$

a,b - constants

 Lidar-radar retrievals (e.g. Wang and Sassen, 2002)

$$IWC = \left(\frac{Z_e}{C'}\right)^{1/(b+1)} \left(\frac{\kappa}{a_1}\right)^{1/(b+1)}$$

 Z_e – radar reflectivity, C', b, a_1 - constants

• Lidar-radar-radiometry (e.g. Delanoë and Hogan, 2008)

Variational scheme

Test case May 27, 2015 – IWC profiles (lidar only)

after Heymsfield et al., 2014

IWC content values can reach >3.5 g/m³ in the HIWC region.

In general, good agreement between in-situ and extinction-based IWC values

Test case May 27, 2015 – IWC profiles (lidar-radar)

NCCNC

GVR in HIWC

G-band (183 GHz) water Vapor Radiometer (GVR)

Developed by ProSensing Inc. and first airborne installation on Convair in 2007 (Pazmany & Wolde, 2009)

Measures brightness temperature at 183.31 ±1, ±3, ±7 and ± 14 GHz

Neural Network Retrievals of PWV and LWP from GVR brightness temperature (Pazmany, 2009; Cadeddu et. al., 2009)

GVR Response in ICI environment – Cayenne 2015

Simulated Brightness Temperatures Along the Flight Path

Averaged cloud, consisting of 29 layers.

As above (right panel) but with the cloud optical depth multiplied everywhere by a factor of five.

Brightness temperature measurements compared to simulations. Time interval is 6.0 seconds, or 239 measurements.

Results of radiative transfer simulations are In broad qualitative agreement with observations, considering the absence of the thermodynamic structure of the atmosphere and the PSD within the cloud.

Summary

Preliminary analysis of responses and signatures of NAWX in HIWC environment:

- IWC-Z follow a power-law fit for Z < 20 dBZ and depends on temperature at W-band.
- For X-band, the IWC-Z relationship in aggregates with Z > 20 dBZ is different from IWC-Z relationship in HIWC regions. Polarization (Kdp) based IWC estimation shows a better result than Ze based IWC at X-band
- Close to the aircraft (<500 m range), there is no difference between W and X-band reflectivity values in HIWC region

High Lidar extinction in HIWC

At G-band, the 183±7GHz and 183±14GHz channels show higher responses to HIWC conditions.

Ongoing work

- ✤ IWC (Kdp, Zdr) and IWC (Kdp, Zdr, T).
- W-band polarimetric radar signatures of HIWC environment.
- Dual-frequency (X and W-band) analysis.
- IWC detection and estimation algorithm for realtime application
- Lidar-Radar based HIWC reterivals
- ✤ Modeling of HIWC Tb responses at 183 GHz

US-Honeywell Boeing 757

NRC Convair

119

French Falcon-20

Many thanks to the 2015 Cayenne HAIC-HIWC Teams that supported the Convair flight opeations

Acknowledgement

- Instrumentation integration, field deployment and flight operations during the HAIC-HIWC airborne campaign in Cayenne in May 2015 were funded by Environment and Climate Change Canada and National Research Council of Canada.
- Data processing is supported by Transport Canada, Federal Aviation Administration, NRC and ECCC.

High Ice Water Content (HIWC) Program

© Her Majesty the Queen in Right of Canada, as represented by the Minister of the Environment and the National Research Council of Canada, 2015.

The document and related information shall not be copied nor disclosed without NRC's prior written authorization.

Environnement Canada

Thank you

Contact: Mengistu Wolde

Senior Research Officer Tel: 613-998-3790 Mengistu.wolde@nrc-cnrc.gc.ca www.nrc-cnrc.gc.ca

