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ALPHA 3-Input v1.0: Deployed in Field Campaigns

. 3D Radar
Satellite Model S
Find highest, coldest, Find deep cloud layer, Find active updrafts, high

thickest clouds from Total
Water Path, Cloud Top
Height and Cloud Top
Temperature — 2D field
Total Satellite Interest

heavy precipitation, high
condensate, updrafts,
temperature below -15°C
—3D field
Total Model Interest

reflectivity in column
along with heights of 10
and 30 dBz echo tops
—2D field
Total Radar Interest

Calculate Total HIWC Interest

If Total Satellite Interest is >0
Model 3D Temperature Interest * [ 45% Total Satellite Interest + 10% Total

Model Interest + 45% Total Radar Interest ]

= Total HIWC Interest




Objective Re-Design of the ALPHA Fuzzy
Logic Algorithms Using Field Campaign Data

* Fuzzy logic methodology allows for adjustment of multiple
parameters in the algorithms including:
- Input variables used
- Shape of membership function for each variable
- Weight given to each variable in the blending process

» Optimization of parameter set
- Need a performance metric that defines “optimal”
- Apply machine learning tool to our data set
- Many iterations later, we have a new algorithm



Input Variables Considered for Use in ALPHA

Effective Cloud Top Temperature Temperature Maximum Reflectivity in Column
Effective Cloud Top Height Surface Precipitation Maximum Height of 30 dBz Reflectivity
Total Water Path Total Condensate Maximum Height of 10 dBz Reflectivity
Optical Depth Total Water Path Vertically Integrated Liquid

Brightness Temperature Difference (6.7 —  Vertical Velocity Volume Averaged Height Integrated
10.8 um) Reflectivity

Brightness Temperature Difference (10.8 Tropopause Height Precipitation Ice Mass

-12 um)

Convective Available Potential
Energy, Convective Inhibition

Divergence/Convergence

l Vorticity l



Methods/PSO Summary

Used a “Particle Swarm Optimization” to optimize
membership functions and weights

o Stochastic, supervised machine learning algorithm

o Tests sets of parameters for performance and
automatically adjusts them to get progressively
better performance

> Objective way to choose ALPHA membership
functions and weights

o Works in any number of dimensions
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PSO Implementation

3 degrees of freedom per input field
o Location of first inflection point
o Distance between inflection points (enforced to be positive)
o Weight (enforced to be positive and sum to 1)

Membership functions are piecewise linear with exactly 2 inflection points
o Sign of each membership function also determined by user

PSO can remove inputs by assigning zero weight, but cannot add new inputs

Radar, satellite, model, and temperature interests optimized separately
o Blended using weights from another PSO



Optimization Metrics Tested

The PSO algorithm needs to know how to score each location so that it can

determine how the particles should move in each iteration. We tried several
metrics:

1) Correlation between IWC and interest

2) Histogram Error where we bin interest values, look at sum of squared difference from an “ideal”
histogram where interest = fraction of MOG IWC measurements

3) Fraction of Correct assignments using a 0.5 IWC and 0.5 interest thresholds
4) Sum of PoDno and PoDyes using 0.5 IWC and 0.5 interest thresholds
5) Products developed to try to balance two or more of the other metrics at once

° (1 - correlation)*(histogram error)*(fraction of wrong assignments)

> (1 —correlation)*(histogram error)*(2 — PoDyes - PoDno)



Choice of Metric

The correlation between IWC and interest was the preferred metric
o Utilized the most information

° No need to bin or categorize the IWC or the interest

o All of the other metrics relied on defining bins or thresholds for
IWC and/or interest, so some information is lost in the process of
doing this

o Many other metrics put a lot of weight on just a handful of
inputs

° Can still look at histogram shape and PoD statistics after running
PSO for further verification



ALPHA 2.0 Summary

All membership functions and weights adjusted based on “training” with IWC data from IKP2
Satellite Interest

° Incorporate two new brightness temperature difference fields

° Replace total water path with optical depth
Radar Interest

° Remove 30 dbz height

o Add new VAHIRR field (volume averaged height integrated radar reflectivity)
Model Interest

° Remove total water path and precipitation

o Add surface wind curl and divergence

°  Only permitted to increase final interest
Temperature Interest

° Include warmer temperatures




Performance Comparison

Final 3-Input ALPHA Comparison Final 2-Input ALPHA Comparison
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These ROC curves are created by setting a constant HIWC threshold of 0.5 g/m”3 and letting the HIWC
interest threshold vary between 0 and 1

Note: The 3-Input interest has a much smaller sample size than the 2-Input. If we only consider point where
both interests are available, the 3-Input performs better than the 2-Input interest.
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Jan 23rd Darwin Flight

Case Study

Jan 23rd ALPHA 2.0

Jan 23rd ALPHA 1.0
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Case Study: Jan 23rd 2015, 22:45 UTC
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Florida Verification: Satellite

Stronger correlation between interest and IWC than training set (Darwin and Cayenne)
o Florida satellite correlation: 0.6671

o Training set satellite correlation: 0.4394
Few interest values above ~0.55
Very few false negatives
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Next Steps with ALPHA v2.0

Continue with comparison of ALPHA product with IKP2 IWC measurements from
HIWC-Florida experiment

= Independent assessment

Update ALPHA-CONUS real-time product with ALPHA v2.0; implement a version in
Australia

Use ALPHA v2.0 to characterize horizontal variation and time duration of HIWC
features in ALPHA products

Airborne cloud radar (RASTA) IWC retrievals for comparison with ALPHA vertical
variation

= Advection of HIWC features using TITAN (Thunderstorm Identification Tracking

and Nowcastinil



Planned presentations and publications

AMS ARAM Conference - Jan 2017

1. Haggerty, Rugg, McCabe, Kessinger, Strapp, Potts, Palikonda: Detection of High Ice Water Content (HIWC)
conditions: Status of nowcasting tool development for avoidance of ice crystal icing events, submitted.

2. Rugg, Haggerty, McCabe, Kessinger, Strapp, Delanoe: Evaluation of the Algorithm for Prediction of High Ice Water
Content Areas (ALPHA): Methods and Results, submitted

AIAA Atmosphere and Space Environment Conference - June 2017

1.  Rugg, Haggerty, Palikonda, Potts: High Ice Water Content Conditions around Darwin: Frequency of Occurrence and
Duration as Estimated by a Nowcasting Model, submitted.

Journal Articles in Preparation
1. Haggerty and HIWC co-authors: Development and Verification of a Detection Method for High Ice Water Content
Regions, planned submission to an AMS journal, early 2017
2. Haggerty, Jensen, and Yost: High Ice Water Content and Airborne Temperature Measurement Anomalies near

Troiical Convection| ilanned submission to an AMS '|ournaI| earli 2017
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ALPHA 2.0: Temperature Interest

The blended interest is multiplied by the Air Temperature (C)
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V2.0 Performance by IWC Threshold

True Positive Rate

Final 3-Input ALPHA 2.0 Interest
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Brightness Temperature Differences

Assigned high weight in ALPHA 2.0 satellite
interests

> Over 60% combined . BTD (6.8.m - 10.8:m)
Water vapor minus infrared (right) ==

° Indicates moist stratosphere

o Associated with overshooting tops
Two different infrared channels (below)
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