

Wind Tunnel Investigation on the Response Characteristics of Particle Spectrometers and LWC/ TWC Devices in SLD Cloud Conditions

Prepared by: Biagio Esposito (CIRA) and Walter Strapp (Met Analytics)

Presented by: Walter Strapp (Met Analytics)

HAIC-HIWC Science Team Meeting 16-17 May, 2016

19 May: impromptu and reserved breakout meetings

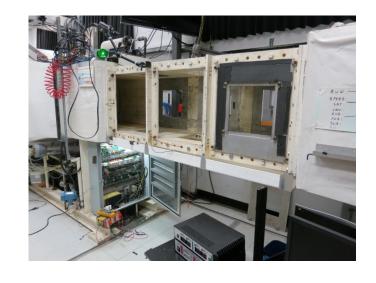
Novotel North York Hotel, 3 Park Home Ave., Toronto, Canada, M2N 6L3

Updates

- ➤ CIRA management decided to freeze the program for the next year, waiting to decide which slot will be more suitable for CIRA IWT schedule foreseen on 2017.
- ➤ Although the CIRA slot is still not secured, the preliminary measurements will be performed on Dec. 2016 in order to extend the CIRA SLD calibration to additional freezing drizzles conditions.
- ➤ On April 19, 2016 a telecom between CIRA/NRC/NASA/FAA starts to re-define the project's objectives for testing due to the potential involvement of NASA IRT
- ➤ The multiple facilyties involvment (CIRA-IWT, NASA-IRT, NRC-AIWT), allow to better split the targets in two areas:
 - □ Common studies (target #1)
 - ☐ Specialised studies (target #2)

Updates

- ➤ The objectives for target #1 on «common» study are based on:
 - Facility inter-comparison vs. nominal conditions using their own instrumentation «standard»
 - Use of new technologies and some legacy instruments, to assess accuracy, and provide information on the potential differences in the community's tunel calibrations
 - Data processing methodologies used for LWC and Size instruments
- ➤ The objectives for target #2 on the «specialised» study are for the test facility that can be able to generate specific conditions through which it will be:
 - Improve understanding of capabilities of instrumentation to separate of ice and liquid components in mixed-phase conditions
 - Assess the instrumentation response in «critical» 50 μm 150 μm region for better characterization of SLD conditions with <u>bi-modal PSDs</u>



Icing Wind Tunnels

CIRA IWT							
T/S size (HxW)	Max speed	SAT	Altitude				
2,25 m x 1,15 m	225 ms ⁻¹	-40 °C	23,000ft				
Target #1 Facility's std instruments & new technologies (IKP-2, HSI)							
Target #2 Foi	For b-modal PSDs: CDP-2, 2D-S						

HASA III					
T/S size (HxW)		Max speed	SAT	Altitude	
1,8 m x 2,7 m		150 ms ⁻¹	-35 °C	s.l.	
Target #1		lity's std instruments & new nologies (IKP-2, HSI)			
Target #2	For	b-modal PSDs	: CDP-2, PD	1-4, 2D-S	

NRC Altitude Icing Wind Tunnel							
T/S size (HxW)	Max speed	SAT	Altitude				
0.57 mx 0.57 m	100 ms ⁻¹	-35 °C	30,000 ft				
Target #1 Facility's std instruments & new technologies (IKP-2, HSI)							
Target #2 For mixed-phase: CPSPD, PDI-4,							

CIRA std approach used for MVDs, PSDs calibration

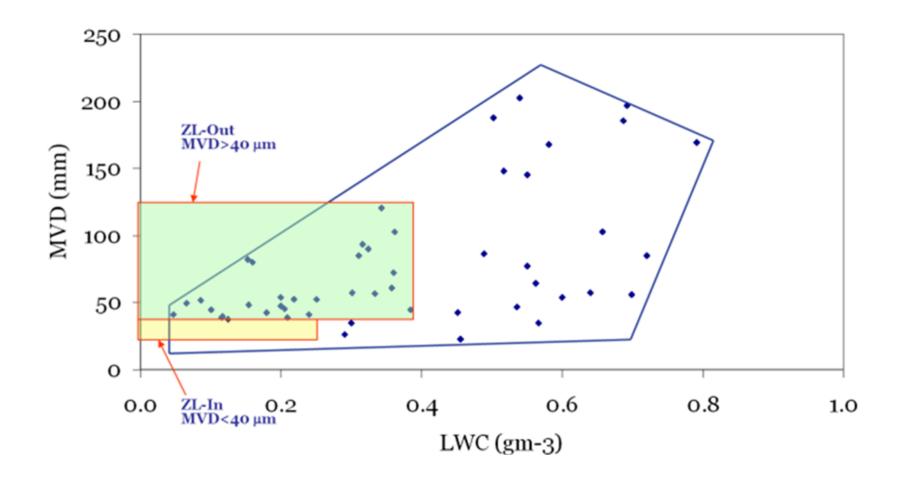
Used 3 Instruments

- •ADA small range (1 μ m 147 μ m)
- •ADA large range (2 μm 664 μm)
- •OAP 2DC-G (15 μ m 970 μ m)

CIRA std approach used for MVDs, PSDs calibration

Used 3 Instruments

- •Icing Blade
- •SEA 2 mm hot-ware sensor head
- •SEA Robust probe with concave element



Preliminary ATS envelope in SLD conditions at 60 m/s

Conclusions

- The LD envelope achieved with previous CIRA SLD calibration needs to be improved with generation of more SLD conditions with bi-modals PSDs characteristics
- As preparatory activities further investigation need to be performed to better address both MVD and LWC distribution and coverage in larger IWT test section (2,35 m H x 3,6 m W).
- The uncertainty on the LWC measurements must be also resolved due to the lack of absolute reference system for LWC calibration in SLD conditions (the iso-kinetic evaporator probe will be useful during the instrumentation comparison to assess this issue).
- A new spray nozzle setup is in developing phase to improve the bimodality cloud characteristics.