## Characterization of Crystal Size Distributions as Gamma Functions in High Ice Water Content Conditions

G. McFarquhar<sup>1</sup>, S. Zhu<sup>1</sup>, W. Wu<sup>1</sup>, J.Um<sup>1</sup>, J.W. Strapp<sup>2</sup>, A. Schwarzenboeck<sup>3</sup>, A. V. Korolev<sup>4</sup>, & D. Leroy<sup>3</sup>

<sup>1</sup>University of Illinois, Urbana, IL <sup>2</sup>Met Analytics, Toronto, ON <sup>3</sup>Université Blaise Pascal, Clermont, France <sup>4</sup>Environment Canada, Downsview, ON

## OUTLINE

- Review of technique to fit HIWC/HAIC SDs as volume of equally realizable solutions
  - What determines uncertainty in SDs?
- 2. Stratification of HIWC/HAIC cases
  - According to correlation of IWC & D<sub>mm</sub>
- 3. Surfaces in  $(N_0, \lambda, \mu)$  phase space for HIWC conditions
- 4. Occurrence of multiple modes during HIWC/ HAIC
- 5. Future

Gamma Functions
 Gamma functions used to characterize N(D)
 N(D) = N<sub>0</sub> D<sup>μ</sup> exp(-λD)
 with N<sub>0</sub> intercept, λ slope and μ shape
 N<sub>0</sub>, μ, and λ calculated from Incomplete Gamma Fit (IGF) that minimizes χ<sup>2</sup> difference

- between fit and observed moments
- Any (N<sub>0</sub>,μ,λ) within Δχ<sup>2</sup> of minimum χ<sup>2</sup> regarded as equally realizable solution
- Δχ<sup>2</sup> determined from statistical uncertainty on measured moments on which fit based
- Uncertainty in family of SDs also originates from variability of SDs





→ How do these volumes vary with environmental parameters

## **Phase I of HIWC/HAIC**

Phase I measured high IWCs (> 1.5 g m<sup>-3</sup>) on 19 flight days, representing 12,352 s of data (~ 2280 km)

• Are SDs in these regions similar to SDs in non high-IWC conditions?

 Leroy et al. (2016) showed D<sub>mm</sub> decreased in high IWC regions for young convective systems, but D<sub>mm</sub> could increase for longerlived cases

• Do we have to represent SDs differently in these different regions?









| L | Flig<br>ht # | # HIWC<br>Cases | R (IWC,D <sub>mm</sub> ) | Age & Lifetime (h) |       |
|---|--------------|-----------------|--------------------------|--------------------|-------|
|   | 2            | 1               | -0.65                    | 15 – 21            | ter   |
|   | 4            | 2               | -0.4                     | 9 – 14             |       |
|   | 6            | 16              | -0.31                    | 3 – 10             |       |
|   | 8            | 12              | -0.42                    | 4 - 14             |       |
|   | 9            | 1               | 0.12                     | 5 – 9              |       |
|   | 10           | 12              | -0.35                    | 5 – 13             |       |
|   | 12           | 11              | 0.1                      | 15 – 41            |       |
|   | 13           | 6               | 0.55                     | 21 – 41            |       |
|   | 14           | 3               | -0.29                    | 11 – 24            | +     |
|   | 15           | 10              | -0.37                    | 8 – 19             | mitel |
| 2 | 16           | 13              | -0.41                    | 10 – 17            |       |
|   | 18           | 9               | 0.06                     | 18 – 30            |       |
|   | 19           | 3               | 0.14                     | 8 – 20             |       |
|   | 22           | 9               | -0.36                    | 10 – 17            |       |
|   | 23           | 13              | 0.45                     | 7 – 11             |       |



### More than just age is causing different behavior, but we haven't figured out yet what causes the difference!

| 12 | 11 | 0.1   | 15 – 41 |
|----|----|-------|---------|
| 13 | 6  | 0.55  | 21 – 41 |
| 14 | 3  | -0.29 | 11 – 24 |
| 15 | 10 | -0.37 | 8 – 19  |
| 16 | 13 | -0.41 | 10 - 17 |
| 18 | 9  | 0.06  | 18 – 30 |
| 19 | 3  | 0.14  | 8 – 20  |
| 22 | 9  | -0.36 | 10 – 17 |
| 23 | 13 | 0.45  | 7 – 11  |

**Distribution of Correlation** 















### **Two Sources of Uncertainty**

EC: Uncertainty in counting statistics proportional to number of counts in each bin (N<sup>1/2</sup>, where N # of counts gives minimum & maximum moments to use in fits)

EV: Variability in SDs in given conditions (e.g., how much SDs can vary in high IWC conditions)

McFarquhar et al. (2015) treated both uncertainties in determining volume of solutions in (N<sub>0</sub>, λ, μ) phase space
 Need # of counts to calculate EC

#### Flight 23 22:13:00-22:16:00









#### But, EC smaller than EV for period with high IWC

Flight 23 22:31:30-22:34:30











Larger  $\mu$  associated with points with positive correlation between IWC and MMD











1



1



**IWC and MMD** 



Zhu et al. 2016

## **HIWC SDs**

18-Feb-2014 22:45:21



But, many of the HIWC SDs have multiple modes!

## **HIWC SDs**

18-Feb-2014 22:45:21



But, many of the HIWC SDs have multiple modes!
Gamma fit does not fit data well

### **HIWC SDs**



SDs from HIWC have frequent multiple modes → application of IGF difficult





**Bimodality more frequent when IWC & D<sub>mm</sub> positively correlated** 



Larger  $\mu$  when multiple modes present

## Summary

Applied IGF technique to determine SD parameters as volume of equally realizable solutions in  $N_0$ ,  $\lambda$ and  $\mu$  phase space

Separate solutions for HIWC cases depending on how IWC/D<sub>mm</sub> correlated; bimodality more common when IWC/D<sub>mm</sub> correlated

- Separate parameterizations, applicable for Monte Carlo schemes, required for different regions
- In future, determine which parameterization should be applied depending on meteorology/age of convection

### **Frequency of Multi-mode distributions**





Magnitude of bimodality is originally log(BmArea).

Magnitude of bimodality is deviation of the PSD from the best moment-fitted gamma distribution.

To be specific, Log(BmArea) =  $\log(\sum i \hbar \log(D \downarrow i + 1 / D \downarrow i) (\log(PSD \downarrow obs, i / PS D \downarrow f it, i)) 12$ 

# For age / lifetime

- Take flight 10 for example: age/lifetime: 5/13
- Oh: 2014-1-29 15:00 ----- Time system starting to form
- 5h: 2014-1-29 20:00 ----- Time taking off:
- 13h: 2014-1-30 04:00 ----- System dissipates
- Figure source: NCAR field catalog
- Overlay: MTSAT-1R Channel 2 Enhanced



2014-1-29 16:00 ----- The first hour where I track white color appearing on the system area (about BT(K)<195)



#### 2014-1-29 20:00 ----- Time taking off: (exact taking off time is 19:34, rounding to the nearest hour)



2014-1-30 04:00 ----- System dissipate judgement:

- 1) System falling apart
- 2) No longer red color appearing on the system (about BT(K)>200)