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•  High Ice Water Content (HIWC) modeling 
objectives 

•  Brief description of numerical model  
•  Results from numerical simulation 
–  Time evolution 
–  Structure of mature system 

•  Summary 

 

Outline 



•  Characterize HIWC events through 
numerical modeling studies 
–  Size, duration, elevations of event 
–  Water/ice contents 
–  Time evolution of ice water fields 
–  Relationship to environment 

•  Data for Radar simulation 
–  Generate realistic numerical data 

sets for Radar detection studies 
–  Represent three-dimensional HIWC 

convective system as it evolves 
within different environments 

–  Extract three-dimensional sub-
volumes sequenced in time during 
the evolution of a HIWC event 

–  Provide as input for Radar 
simulator studies 

–  Post-analysis of extracted data 
provides “truth” for Radar 
simulation studies 

High Ice Water Content (HIWC) Modeling 
Objective 
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View of Mesoscale Convective 
System from Space. Satellite image 
courtesy of Image Science & Analysis 
Laboratory, NASA Johnson Space 
Center  
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TERMINAL AREA SIMULATION SYSTEM (TASS) 

•  Time-dependent, 3-D, Large Eddy Simulation (LES) Model 
•  Meteorological Framework 
•  Prognostic Equations for: 

–  3-Components of Velocity  - Pressure 
–  Potential Temperature  - Rain 
–  Water Vapor   - Snow 
–  Liquid Cloud Droplets  - Hail / Graupel 
–  Cloud Ice Crystals  - Dust / Insects 

 
•  Subgrid-scale turbulence parameterized with modifications for stratification 

and flow rotation 
•  Numerics are accurate, highly efficient, and essentially free of numerical 

diffusion 
•  Contains roughly 60 bulk cloud microphysics submodels 
•  Initialization modules for simulation of convective storms, microbursts, 

atmospheric boundary layers, turbulence, and aircraft wake vortices 
•  Software modifications and re-coding have occurred to take advantage of 

paradigm shifts in computing platforms 
•  User’s guide, version 10.0:  NASA TM-2014-218150 



Cloud Ice Variables in TASS 

•  Important Prognostic Variables: 
–  Ice crystal water   

•  Represents small ice crystals ~ 200 um diameter and smaller 
•  Monodispersed 
•  Weak fall speed 
•  Hexagonal shape 

–  Snow 
•  Represents larger precipitating ice crystals 
•  Inverse exponential distribution with intercept increasing with 

colder temperatures (based on Woods et al. JAS 2008) 
•  Treated as low density spherical particles 

– Graupel (or hail) 
•  Inverse exponential distribution with smaller intercept than 

snow  
•  Higher density and greater fall speed than snow 
•  Generated from frozen raindrops and rimed snow 
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Assumed Particle Size Distributions in 
TASS 
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Category Size Distribution 
Intercept (m-4) 

Particle Density 

 (kg m-3) 

Comment 

Cloud Water Monodispersed 1000 Number of drops per 
volume is an input 

 (=75 cm-3) 

Rain 2.25 x 107 MR
0.375 1000 Intercept increases with 

rainwater content,  
MR (g m-3) 

Cloud Ice Monodispersed Particle mass (kg) =    
0.1758 Dic 

2.2 

Hexagonal plates 

Diameter mostly < 200 µm 

Snow 10(7.02 – 0.0475 Tc)  for  
4oC > Tc > -40oC 

100   if   Tc <-200C 

100 +35/20 (Tc +20) if  
Tc > -20 oC 

  

Intercept increases with 
decreasing temperature: 

graupel like snow 

Hail/Graupel NoH 450 NoH intercept  used for 
graupel = 4 x105 m-4) 



Diagnostic of Model Radar Reflectivity 
Factor (e.g. Smith et al JAM 1975) 

•  Radar Reflectivity Factor from rain based on Rayleigh 
Scattering:  
𝑍↓𝑅 = ∫0↑∞▒𝑁(𝐷↓𝑅 ) 𝐷↓𝑅↑6 𝑑𝐷↓𝑅  

•  Radar Reflectivity Factor from “dry” snow (similarly for 
ice crystals and dry hail/graupel) 

𝑍↓𝑆 = |𝐾↓𝐼 |↑2 /|𝐾↓𝑊 |↑2   𝛿↓𝑆↑2 /𝛿↓𝑤↑2  ∫0↑∞▒𝑁(𝐷↓𝑆 ) 𝐷↓𝑆↑6 
𝑑𝐷↓𝑆  
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TASS Simulation of Darwin HIWC Event 

•  Initialization based on atmospheric sounding launched at 
Darwin, on 24 January 2014,  0000 UTC  

•  Weakness: the actual system was over 200 km from Darwin 
and formed several hours earlier 

•  Domain configured offshore over the Timor Sea (southwest of 
Darwin ) – within area where convective line is developing 

TASS Domain 

Infrared satellite imagery 
showing cloud top 
temperatures of a 
mesoconvective system 
offshore of Northern Australia 
on 23 Jan 2014 (Courtesy 
NASA Langley Satellite 
Group) 
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MTSAT-IR, 23 Jan 14, 18:15 & 2000 UTC 
Channel 2 (Courtesy NASA Langley Satellite Group) 
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MSAT VISIBLE, 23 Jan 2014, 2201 UTC  122 E 
-132E, 10S-20S (Courtesy NASA Langley Satellite Group) 
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Animation: IR Satellite (cloud top 
temperatures) (Courtesy NASA Langley Satellite Group) 
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Darwin, 0000 UTC,  24 Jan 2014 – Model 
Setup 
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TASS Initialization Sounding 

Sounding Parameters: 
•  Tropopause height: 15.55 km 
•  Tropopause temperature:        

- 76.8oC 
•  Melting level: 5.2 km 
•  Windshear vector, cloud base 

to  6 km elevation:  from 750 
 
Convection triggered by Initial 
Impulse 
 
 

P 
(m

b)

T(C)



TASS Domain Configuration 
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Domain	Size	and	Resolu0on	
Domain	Parameter	 Physical	Dimension	

Lateral	dimensions	 45	km	x	112.5	km	

ver0cal	dimension	 18.6	km	

Lateral	grid	spacing	 150	m	

Ver0cal	grid	spacing	 150	m	

Computa0onal	grid	 ~29		x	106	points	

X 
Y 

Z 
- V

er
tic

al 

•  Grid rotated:  -15o (y- directed 
toward 345o).  Shear vector 
aligns orthogonally with cyclic 
BC 

–  Periodic BC at x = X0 and X*, 
–  Open BC at y= Y0 and Y* 

•  Integrated in time for almost 4 
hours 



Comparison Between Observed and Simulated 
Features for Darwin 
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Parameter Observed TASS 
Orientation of convective line SW - NE WSW - ENE 

Lifetime of system 5+ hours 4+ hours 

Coldest cloud top temperature -87oC 
 at 2019 UTC 

-86oC  
at t =165 min 

Primary direction of canopy expansion WNW NW 

Line movement nearly stationary nearly stationary 

Maximum IWC at flight level 3.5 g m-3 3.5 g m-3 

Maximum scale of IWC greater than 1 g m-3 65 km 40 km 

Maximum scale of IWC greater than 2 g m-3 40 km 10 km 



Time Evolution of Simulated 
Mesoconvective System 
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Darwin Simulation 



Simulated Maximum Ice Water Content above 
9 km Elevation 
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Ice Crystal Water (g/m-3) 

Evolution of Storm: RRF vs IWC 
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Horizontal Cross Sections at 10 km elevation 

Radar Reflectivity Factor (dBZ) 
Time = 2:00:00 Time = 2:45:00 Time = 3:52:30 



Ice Crystal Water (g/m-3) 

Evolution of Storm: RRF vs IWC 
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Horizontal Cross Sections at 10 km Elevation 

Cloud Top Temperature (K) 
Time = 2:00:00 Time = 2:45:00 Time = 3:52:30 



TASS Darwin Simulation: Animation of 3-D 
Cloud System (2 hr – 4.5 hr) 
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•  Viewed from South 
•  Multiple pulsing convective cells feed canopy overhang 
•  Overhanging cloud canopy much larger than active cells 



Evolution of Storm: RRF Vertical Cross-
Sections 
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Time of Storm 
Peak Intensity 

Decaying  
Stage 



Structure of Mature System 
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Darwin Simulation 



Darwin Simulation: RRF vs IWC  

•  Large areas of HIWC with RRF less than 33 dBZ (only small areas of green) 
•  Sustained areas (over 40 km wide)  of ice water greater than  1.0  g/m3 and with 
       peak values at 2.6 g/m3 
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Radar Reflectivity Factor (dBZ) Ice Water Concentration (g m-3) 
Horizontal Cross Sections at Z = 10 km 



Darwin Simulation: Cloud Top 
Temperature vs IWC  

Coldest (highest) cloud tops downshear from peak HIWC values 
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Ice Water Concentration (gm-3) 

Horizontal Cross Sections at Z = 10 km 
Cloud Top Temperature (K) 



Darwin Simulation: Turbulence vs IWC  

Simulation shows light turbulence at flight level in vicinity of HIWC event 
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Horizontal Cross Sections at Z = 10 km 
Ice Water Concentration (gm-3) RMS-g Acceleration (m/s2) 



Darwin Simulation: Sigma-V vs IWC  

Greater values of standard deviation of velocity  (component normal to convective 
line) in areas of HIWC 
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Horizontal Cross Sections at Z = 10 km 
Ice Water Concentration (g m-3) Sigma V (m/s) 



TASS Radar Reflectivity Factor vs Ice 
Water Content:  Vertical Cross Section 
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•  Radar reflectivity 
factor in excess of 40 
dBZ mostly confined 
to lower 6 km of 
storm 

 
•  Weak radar 

reflectivity factor at 
flight level (~10km 
AGL) 

•  Peak ice water 
concentration near 
9-10 km elevation. 

•  HIWC extends 
downshear from 
peak values 



Comparison with Heymsfield’s Vertical Profile 
of Peak RRF for Oceanic Convection 
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•  Figure from Heymsfield et al, J. 
Atmos. Sci., February 2010; 
©American Meteorological 
Society. Used with permission 

•  From Nadir viewing high-altitude 
airborne Radar 

•  NASA ER-2 Doppler Radar  
•  X-Band 
•  Dual 3o beam 

•  Measured vertical profiles of peak 
radar reflectivity for oceanic 
mesoconvective systems 

 
•  Average (heavy dark curve) 

decreases with elevation,  < 40 
dBZ above 6 km elevation 



Comparison with Heymsfield’s Vertical Profile 
of Peak RRF for Oceanic Convection 
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•  Figure from Heymsfield et al, J. 
Atmos. Sci., February 2010; 
©American Meteorological 
Society. Used with permission 

•  From Nadir viewing high-altitude 
airborne Radar 

•  NASA ER-2 Doppler Radar  
•  X-Band 
•  Dual 3o beam 

•  Measured vertical profiles of peak 
radar reflectivity for oceanic 
mesoconvective systems 

 
•  Average (heavy dark curve) 

decreases with elevation,  < 40 
dBZ above 6 km elevation 

•  With TASS profiles at two times 



Houze et al.’s  Conceptual Model with 
Added Region of Expected HIWC 

Conceptual model of a convective line with trailing-stratiform precipitation 
viewed in a vertical cross section oriented perpendicular to the line. 
Intermediate and strong radar reflectivity is indicated by medium and dark 
shading, respectively. Dashed-line arrows indicate fallout trajectories of ice 
particles passing through the melting layer. HIWC denoted by yellow shading. 
[Adapted from Houze et al., Bulletin of the American Meteorological Society, 
June, 1989; ©American Meteorological Society.  Used with permission. ] 
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Houze et al.’s  Conceptual Model with 
Added Region of Expected HIWC 

Conceptual model of a convective line with trailing-stratiform precipitation 
viewed in a vertical cross section oriented perpendicular to the line. 
Intermediate and strong radar reflectivity is indicated by medium and dark 
shading, respectively. Dashed-line arrows indicate fallout trajectories of ice 
particles passing through the melting layer. HIWC denoted by yellow shading. 
[Adapted from Houze et al., Bulletin of the American Meteorological Society, 
June, 1989; ©American Meteorological Society.  Used with permission. ] 
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HIWC 



TASS Darwin Simulation: Animation of 3-D 
Cloud System (2 hr – 4.5 hr) 
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•  Viewed from South East 
•  RED -  RRF > 40 dBZ 
•  Yellow – IWC > 0.5 g m-3 



Summary of Findings from Simulation 

•  Simulation captures many features of the Darwin storm and 
demonstrates the feasibility of simulating a HIWC event with a 
convective cloud model 

•  HIWC conditions were demonstrated to occur in regions with 
low Radar reflectivity 

•  Peak ice water concentrations in excess of 3.0 g m-3 were 
simulated at flight level. Ice water concentrations of at least 
1.0 g m-3 expanded to 40 km in scale 

•  During the intense phase of convective system, positions of 
peak ice concentration were correlated with areas of higher 
radar reflectivity and cold cloud tops 

•  During mature phase,  HIWC expands over larger area, but 
may not be correlated with coldest cloud tops or have 
detectable levels of radar reflectivity factor 

•  Darwin was a long-lived mesoconvective system maintained 
by an ensemble of pulsing convective plumes 
–  plumes supply high concentrations of ice crystals to a 

growing cloud canopy 
–  No evidence of an organized and continuous updraft structure 
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