Improving the Prediction of Cloud Ice in Operational NWP Models

Jason Milbrandt

Environment and Climate Change Canada (RPN-A)

In collaboration with: Hugh Morrison, NCAR (Boulder, USA) Zhipeng Qu, ECCC (Toronto)

HAIC-HIWC Science Team Meeting May 16-17, 2016

Simplified organizational chart of ECCC

Environment and Climate Change Canada

Science and Technology Branch

Cloud Physics and Severe Weather (Toronto)

- measurements, nowcasting techniques, etc....

Numerical Weather Prediction Research (Montreal)

- development of NWP model and modeling systems

Meteorological Services of Canada

- operational NWP (modeling, forecasting, ...)

ECCC's current NWP systems

Simulation with 2.5-km HRDPS (High Resolution Deterministic Prediction System)

* Computed from microphysics (Milbrandt-Yau 2-moment)

Cloud Microphysical Processes

BAMS, 1967

Microphysics Parameterization Schemes

Hydrometeors are traditionally partitioned into categories

BAMS, 1967

Microphysics Parameterization Schemes

The particle size distributions are modeled

For each category, microphysical processes are parameterized to predict the evolution of the *particle* <u>size distribution, N(D)</u>

TYPES of SCHEMES:

Bulk Microphysics Scheme* in GEM (HRDPS)

2 liquid: *cloud*, *rain* 4 frozen: *ice*, *snow*, *graupel*, *hail* For each category x = c, r, i, s, g, h: $N_x(D) = N_{0x}D^{\alpha_x}e^{-\lambda_x D}$ (complete) $V_x(D) = a_x D^{b_x}$ $m_x(D) = c_x D^{d_x}$ (empirical)

Six hydrometeor categories:

Scheme version	Prognostic variables	
double-moment	q_x , N_x	(12)
triple-moment	q_x , N_x , Z_x	(17)

* Milbrandt and Yau (2005)

Traditional bulk approach for the ice phase

Problems with pre-defined categories:

- 1. Real ice particles have complex shapes
- 2. Physics applied is often inconsistent
- 3. Conversion between categories is ad-hoc and leads to large, discrete changes in particle properties

NOTE: Bin microphysics schemes have the identical problem

New Bulk Microphysics Parameterization: Predicted Particle Properties (P3)*

Based on a conceptually different approach to parameterize ice-phase microphysics.

NEW CONCEPT

"free" category – predicted properties, thus freely evolving type vs.

"fixed" category – traditional; prescribed properties, pre-determined type

Compared to traditional (ice-phase) schemes, P3:

- avoids some necessary evils (ad-hoc category conversion, fixed properties)
- has self-consistent physics
- is better linked to observations
- Is more computationally efficient

* Morrison and Milbrandt (2015) Milbrandt and Morrison (2016)

Overview of P3 Scheme

Prognostic Variables: (advected)

LIQUID PHASE:	2 categories, 2-moment:	
	Q_c – cloud mass mixing ratio	[kg kg⁻¹]
	$oldsymbol{Q}_{oldsymbol{r}}$ – rain mass mixing ratio	[kg kg⁻¹]
	N_c – cloud number mixing ratio	[#kg ⁻¹]
	N_r – rain number mixing ratio	[#kg⁻1]

ICE PHASE:	nCat categories, 4 prognostic variables each:		
	$Q_{dep}(n)^*$ – deposition ice mass mixing ratio	[kg kg⁻¹]	
	$Q_{rim}(n)$ – rime ice mass mixing ratio	[kg kg⁻¹]	
	$N_{tot}(n)$ – total ice number mixing ratio	[# kg ⁻¹]	
	$\boldsymbol{B}_{rim}(n)$ – rime ice volume mixing ratio	[m ³ kg ⁻¹]	

* $Q_{tot} = Q_{dep} + Q_{rim}$, total ice mass mixing ratio (actual advected variable)

A given (free) category can represent any type of ice-phase hydrometeor

Prognostic Variables: Q_{dep} – deposition ice mass mixing ratio [kg kg⁻¹] Q_{rim} – rime ice mass mixing ratio [kg kg⁻¹] N_{tot} – total ice number mixing ratio [# kg⁻¹] **B**_{rim} – rime ice volume mixing ratio [m³ kg⁻¹] **Predicted Properties:** F_{rim} – rime mass fraction, $F_{rim} = Q_{rim} / (Q_{rim} + Q_{dep})$ [--] ρ_{rim} – rime density, ρ_{rim} = Q_{rim} / B_{rim} [kg m⁻³] D_m – mean-mass diameter, $D_m \propto Q_{tot} / N_{tot}$ [m] V_m – mass-weighted fall speed, $V_m = f(D_m, \rho_{rim}, F_{rim})$ [m s⁻¹]

etc.

Diagnostic Particle Types:

Based on the predicted properties (rather than pre-defined)

GENERAL (all schemes)

$$Q^{+} = Q^{0} + \Delta Q \Big|_{PROC_{1}} + \Delta Q \Big|_{PROC_{2}} + \dots$$

$$\Delta Q \Big|_{PROC_{1}} = \Delta t \cdot \frac{1}{\rho} \int_{0}^{\infty} \frac{dm(D)}{dt} \Big|_{PROC_{1}} N(D) dD$$

 $\propto M^{(p)}$ (and other moments)

Computing the tendencies for the prognostic variables (i.e. process rates) essentially amounts to computing various moments of N(D)

Predicting process rates for $V_x \rightarrow$ computing various $M_x^{(p)}$

V = prognostic variable (*Q*, *N*, ...) *x* = category (rain, ice, ...)

TRADITIONAL SCHEMES (e.g. 2-moment)

$$M^{(p)} = \int_0^\infty D^p N_x(D) dD = N_{0x} \frac{\Gamma(1 + \mu_x + p)}{\lambda_x^{p+1+\mu_x}}$$

Fixed category \Rightarrow constant *m*-*D* parameters

$$m(D) = \alpha D^{\beta}$$

$$Q = \frac{1}{\rho} \int_0^\infty m(D) N(D) dD = \frac{1}{\rho} \int_0^\infty \alpha D^\beta N_x(D) dD = \frac{\alpha}{\rho} M^{(\beta)} = \frac{\alpha}{\rho} N_{0x} \frac{\Gamma(1 + \mu_x + \beta)}{\lambda_x^{1 + \mu_x + \beta}}$$
$$N = \int_0^\infty N_x(D) dD = M^{(0)} = N_{0x} \frac{\Gamma(1 + \mu_x)}{\lambda_x^{1 + \mu_x}}$$

- impose assumption about μ
- 2 equations, 2 unknowns \rightarrow solve for λ , N_0

\rightarrow Now, any $M^{(p)}$ can be computed analytically

P3 SCHEME

$$M^{(p)} = \int_0^\infty D^p N_x(D) dD = N_{0x} \frac{\Gamma(1 + \mu_x + p)}{\lambda_x^{p+1+\mu_x}}$$

Free category \Rightarrow <u>variable</u> *m*-*D*, *A*-*D*, and *V*-*D* parameters

$$Q = \frac{1}{\rho} \int_0^\infty m(D) N(D) dD = \frac{1}{\rho} \int_0^\infty \alpha D^\beta N_x(D) dD = \frac{\alpha}{\rho} M^{(\beta)} = \frac{\alpha}{\rho} N_{0x} \frac{\Gamma(1 + \mu_x + \beta)}{\lambda_x^{1 + \mu_x + \beta}}$$
$$N = \int_0^\infty N_x(D) dD = M^{(0)} = N_{0x} \frac{\Gamma(1 + \mu_x)}{\lambda_x^{1 + \mu_x}}$$

 \rightarrow cannot compute Q (or any other $M^{(p)}$) analytically

P3 SCHEME – Determining $m(D) = \alpha D^{\beta}$ for regions of *D*:

P3 SCHEME – Computing *N(D)* **parameters :**

- 1. Compute properties $F_{rim} = Q_{rim}/(Q_{dep}+Q_{rim})$, $\rho_{rim} = Q_{rim}/B_{rim}$
- 2. Determine integral ranges, D_{th} , D_{gr} , D_{cr}
- 3. Determine PSD parameters (λ , N_0 , μ)
 - solved numerically (iteratively; pre-computed and stored in look-up table)

$$Q = \frac{1}{\rho} \left[\int_{0}^{D_{th}} \alpha_1 D^{\beta_1 + \mu} e^{-\lambda D} dD + \int_{D_{th}}^{D_{gr}} \alpha_2 D^{\beta_2 + \mu} e^{-\lambda D} dD + \int_{D_{gr}}^{D_{cr}} \alpha_3 D^{\beta_3 + \mu} e^{-\lambda D} dD + \int_{D_{cr}}^{\infty} \alpha_4 D^{\beta_4 + \mu} e^{-\lambda D} dD \right]$$

$$N = N_{0x} \frac{\Gamma(1 + \mu_x)}{\lambda_x^{1 + \mu_x}}$$

$$\mu = f(\lambda)$$

- 4. Also, match A-D parameters to m-D parameters for the various regions of D
 - based on geometric + empirical relations
 - for *V-D* (process rates and sedimentation) and $r_{i eff}$ (optical properties)

P3 SCHEME – Computing the process rates:

Now, have λ , N_0 , μ , and integral ranges D_{th} , D_{gr} , D_{cr} (plus $\alpha_{(i)}$, $\beta_{(i)}$, ...)

$$Q^{+} = Q^{0} + \Delta Q \Big|_{PROC_{1}} + \Delta Q \Big|_{PROC_{2}} + \dots$$

$$\Delta Q \Big|_{PROC_{1}} = \Delta t \cdot \frac{1}{\rho} \int_{0}^{\infty} \frac{dm(D)}{dt} \Big|_{PROC_{1}} N(D) dD$$

 $\propto X_1$ (and X_2 , ...)

$$X_{1} = \int_{0}^{D_{th}} D^{a} N_{0} e^{-\lambda D} f(\alpha_{1}, \beta_{1}, ...) dD + \int_{D_{th}}^{D_{gr}} D^{b} N_{0} e^{-\lambda D} f(\alpha_{2}, \beta_{2}, ...) dD + \int_{D_{gr}}^{D_{cr}} D^{c} N_{0} e^{-\lambda D} f(\alpha_{3}, \beta_{3}, ...) dD + \int_{D_{cr}}^{\infty} D^{d} N_{0} e^{-\lambda D} f(\alpha_{4}, \beta_{4}, ...) dD$$

Predicting process rates \rightarrow **computing sums** (X_n) of partial moments

3D Squall Line case: (June 20, 2007 central Oklahoma)

- WRF_v3.4.1, $\Delta x = 1$ km, $\Delta z \sim 250-300$ m, 112 x 612 x 24 km domain
- initial sounding from observations
- convection initiated by *u*-convergence
- no radiation, surface fluxes

10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Reflectivity (dB2)

1-km WRF Simulations with P3 microphysics (1 category):

Morrison et al. (2015) [P3, part 2]

WRF Results: Base Reflectivity (1 km AGL, t = 6 h)

Morrison et al. (2015) [P3, part 2]

WRF Results: Line-averaged Reflectivity (t = 6 h)

Vertical cross section of model fields (*t* = 6 h)

Ice Particle Properties:

Note – only <u>one</u> (free) category

$$V \sim 0.3 \text{ m s}^{-1}$$

$$D_m \sim 100 \,\mu\text{m}$$

$$F_r \sim 0$$

$$P_r \sim 50 \,\text{kg m}^{-3}$$

$$V \sim 1 \,\text{m s}^{-1}$$

$$D_m \sim 3 \,\text{mm}$$

$$→ aggregates$$

$$F_r \sim 1$$

$$P_r \sim 900 \,\text{kg m}^{-3}$$

$$V > 10 \,\text{m s}^{-1}$$

$$D_m > 5 \,\text{mm}$$

$$→ hail$$

etc.

 $F_r \sim 0-0.1$

ho ~ 900 kg m⁻³

1. High Resolution NWP model at Environment Canada

Objective 2: Assessment of the hi-res NWP model.

Case: Cayenne, French Guiana (May 16, 2015)

(Aircraft in situ measure, A-train overpasses, tropical deep convective cloud)

3. Case study

Model simulation for 17:20 UTC

RPN seminar, Jan. 22, 2016

Vertical profile at Lat: 4.17, Lon: -53.52

Concluding comments

Operational NWP models are now at the convective scale (dx = 1-3 km) which permits (requires) detailed bulk microphysics parameterizations (BMPs) and thus detailed treatment of cloud ice

New techniques in BMPs – such as the P3 approach to the representation of ice – show promise for the improvement in numerical guidance of fields related to ice-phase microphysics

For the development and improvement of BMPs – for research and operational NWP – field campaigns such as HAIC-HIWC and the related research are essential

