The Algorithm for the Prediction of HIWC Areas (ALPHA):

Performance Assessment Using Darwin and Cayenne Isokinetic Probe Measurements

Julie Haggerty, George McCabe, Jennifer Black, Allyson Rugg National Center for Atmospheric Research Boulder, Colorado USA

> HAIC-HIWC Science Team Meeting 16-19 May 2016 Toronto, ON

ALPHA development is sponsored by the U.S. Federal Aviation Administration NCAR is sponsored by the U.S. National Science Foundation

NCAR Icing Products Use of Artificial Intelligence Methods

- Fuzzy-logic membership functions are applied to related fields to create interest maps, which are situationally combined to estimate the potential for HIWC conditions
- Rather than applying hard thresholds, this approach allows for uncertainties evident in the datasets and mimics the gradual transition from HIWC to non-HIWC environments associated with each field

Membership Function Development Example: Relative Humidity vs. Icing PIREPs

Membership functions are also derived from field observations, cloud physics principles, and human forecasting techniques

Algorithm for the Prediction of HIWC Areas

ALPHA v1.0

- Set of original membership functions relate each variable to the possibility of HIWC conditions; interest estimates from each variable are blended with adjustable weighting factors
- Membership functions and weighting factors were based on limited data and intuition
- Output is a 3-dimensional, uncalibrated estimate of HIWC likelihood

ALPHA v2.0

 Data from field campaigns allows us to objectively define membership functions using measurements of IWC

ALPHA Assessment Procedures

- Ice water content (IWC) from airborne
 Isokinetic Probe (Darwin and Cayenne flights)
- Extract ALPHA HIWC interest parameters along flight track; compare relative trends in IWC and ALPHA products
- Compile probability of detection statistics
 Correlate IWC observations with individual input fields to evaluate and refine membership functions

Distribution of HIWC Likelihood Parameter vs. Fraction of Moderate or Greater (MOG) IWC

Fraction of MOG IWC vs. Satellite data currently used in ALPHA (NASA LaRC products)

Fraction of MOG IWC vs. Model products currently used in ALPHA (ACCESS and WRF)

Velocity (m/s)

Fraction of MOG IWC vs. Radar products currently used in ALPHA (BOM groundbased radar – Darwin)

Additional Satellite Products under Consideration for ALPHA 2.0

Additional Fields under Consideration for ALPHA 2.0

- Derived model fields (e.g., convergence)
- Radar reflectivity profiles
- Lightning
- Overshooting tops

Total Water Content

Cayenne Case Study 16 May 2015

- ALPHA v2.0: include revised and new membership functions, experiment with weighting factors to optimize simulation of Darwin and Cayenne observations.
- Apply ALPHA v2.0 to HIWC Radar (Florida) data set for independent verification
- Use RASTA IWC retrievals to assess ALPHA vertical variation
- Compare and collaborate with other nowcasting teams