

Feasibility of Modeling HIWC Conditions with the Terminal Area Simulation System

HAIC-HIWC Team Meeting 9-12 November 2015 Melbourne, Australia

Fred H. Proctor, Ph.D. NASA Langley Research Center Hampton, VA 23681-2199 USA E-mail: Fred.H.Proctor@nasa.gov

> Advanced Air Transport Technology Project NASA Advanced Air Vehicles Program

Outline

- High Ice Water Content (HIWC) modeling objectives
- Brief description of numerical model and history of application
- Description of numerical model
- Results from numerical simulations of two cases
- Summary

High Ice Water Content (HIWC) Modeling Objective

- Evaluate feasibility of modeling HIWC events
 - Select real cases
 - Validate capabilities
- Characterize HIWC events through numerical modeling studies
 - Size, duration, elevations of event
 - Water/ice contents
 - Relationship to environment
- Data for RADAR simulation
 - Generate realistic numerical data sets for RADAR detection studies
 - Represent three-dimensional HIWC convective system as it evolves within different environments
 - Extract three-dimensional subvolumes sequenced in time during the evolution of a HIWC Event
 - Provide as input for RADAR simulator studies
 - Post-analysis of extracted data provides "truth" for RADAR simulation studies

TERMINAL AREA SIMULATION SYSTEM (TASS)

- Time-dependent, 3-D, Large Eddy Simulation (LES) Model
- **Meteorological Framework**
- **Prognostic Equations for:**
 - 3-Components of Velocity Pressure
 - Potential Temperature
 - Water Vapor
 - Liquid Cloud Droplets Hail / Graupel
 - Cloud Ice Crystals

- Snow

- Rain

- Dust / Insects

- Subgrid-scale turbulence parameterized with modifications for stratification and flow rotation
- Numerics are accurate, highly efficient, and essentially free of numerical diffusion
- Contains roughly 60 bulk cloud microphysics submodels
- Initialization modules for simulation of convective storms, microbursts, atmospheric boundary layers, turbulence, and aircraft wake vortices
- Software modifications and re-coding have occurred to take advantage of • paradigm shifts in computing platforms
- User's guide, version 10.0: NASA TM-2014-218150

Assumed Particle Size Distributions in TASS

Category	Size Distribution Intercept (m ⁻⁴)	Particle Density (Kg m ⁻³)	Comment
Cloud Water	Monodispersed	1000	Number of drops per volume is an input (constant)
Rain	2.25 x 10 ⁷ M _r ^{0.375}	1000	Intercept increases with rainwater content, <i>M_r (g m⁻³)</i>
Cloud Ice	Monodispersed	Particle Mass = (D _{ic} /4.9 m kg ^{-1/2}) ²	Hexagonal plates
Snow	10 ^(6.95 – 0.6 тс) for 2°C > Tc > -40°C	100 if Tc <-20°C 100 +35/20 (Tc +20) if Tc > -20°C	Intercept increases with decreasing temperature: graupel like snow
Hail/Graupel	N _{oh}	900-450	N _{oh} is an input (constant)

Diagnostic of Model Radar Reflectivity Factor (e.g. Smith et al JAM 1975)

 Radar Reflectivity Factor from rain based on Rayleigh Scattering:

 $Z \downarrow R = \int 0 \uparrow \infty \implies N(D \downarrow R) D \downarrow R \uparrow 6 dD \downarrow R$

 Radar Reflectivity Factor from "dry" snow (similarly for ice crystals and dry hail/graupel)

 $Z \downarrow S = |K \downarrow I| | \uparrow 2 / |K \downarrow W| | \uparrow 2 \quad \delta \downarrow S \uparrow 2 / \delta \downarrow W \uparrow 2 \quad \int 0 \uparrow \infty \implies N(D \downarrow S) \quad D \downarrow S \uparrow 6$ $dD \downarrow S$

 Radar Reflectivity Factor for "wet" hail (accounting for Mie scattering:

 $Z \downarrow HWet = [\int 0 \uparrow \infty @ N(D \downarrow H) D \downarrow H \uparrow 6 dD \downarrow H] \uparrow 0.95$

TASS -- History

- Development began in 1983 for NASA/FAA Windshear Program
- Validated and verified in simulations of cumulus convection, severe local storms, tornadic supercells, microburst wind shear, atmospheric boundary layer turbulence, convective induced turbulence, aircraft wake-vortex transport and decay
- Produced data sets for FAA certification of onboard windshear sensors (1993). Delivered to RTCA
- Supported NTSB investigations of 1994 Charlotte, 1999 Little Rock accidents, as well as the 2001 American Airlines flight 587 crash at JFK

F-Factor Comparison from 1994 CLT Accident

TASS CLT MICROBURST SIMULATION HORIZONTAL WIND VECTORS AT 90 M AGL

Radar Simulation Using TASS Generated Data

TASS – History (continued)

- Used in NASA/FAA program to study convectively induced turbulence and improve aviation safety (2000-2006)
 - Produced data sets for testing and certification of onboard turbulence RADAR systems. Delivered to RTCA
- Used in wake vortex studies for improving airport capacity (1993-2014)
 - Provided guidance for development of wake vortex fasttime prediction models: e.g., the TASS derived algorithm for wake prediction (TDAWP)
 - TASS generated data sets used in development and evaluation of Lidar wake detection software

TASS Simulated Turbulence Intensity – RMS-g Load

Vortex Time to Linking vs Turbulence Intensity

TASS Simulation: Time Evolutions of a Tornadic Supercell (AIAA Paper 2012-0557)

Feasibility Study: TASS Simulation of Darwin and Louisiana HIWC Events

- Two Cases examined from:
 - Darwin, Australia, 23 January 2014, HIAC campaign
 - Offshore Louisiana, 19 August 2015, HIWC campaign
- Both cases associated with coastal mesoconvective systems and measured ice water contents exceeding 2 g m⁻³
- Cases simulated with Large-Eddy-Simulation (LES) cloud-scale model

APPROACH

- Approach is to simulate specific convective elements within the mesoconvective systems, since systems are too large for full simulation with adequate grid resolution
- Horizontal and vertical grid size selected as 150m
- Model left & right boundaries are periodic
- Initialization guidance obtained from satellite and radar data
- Environment defined from nearby modeled or observed atmospheric soundings

Case 1: TASS Simulation of Darwin HIWC Events

- Initialized from atmospheric sounding launched at Darwin, on 24 January 2014, 0000 UTC
- Weakness: the actual system was over a 100 km from Darwin and formed several hours earlier
- Domain configured offshore over the Timor Sea (southwest of Darwin) – within convectively active region

Infrared satellite imagery showing cloud top temperatures of a mesoconvective system offshore of Northern Australia on 23 Jan 2014 (Courtesy NCAR Field Catalogue)

Case 1: Darwin 0000 UTC 24 Jan 2014 – Model Setup

Grid size: $\Delta x = \Delta y = \Delta z = 150m$ Grid points: 304 x 403 x 124 X*,Y*,Z*: 45km x 60km x 18km

Integration time_{max} = 3*hr* 10min

 $\Delta T_{pert} = 1.0K$ R_{pert} = 12000*m*, H_{pert} = 1000*m* NcId = 75 droplets *cm*⁻³

Grid rotated -12° (ie Y – coordinate at 348°)

Periodic BC at x = X⁰ and X*, Open BC at y= Y^o and Y*

Comparison: Between Airborne and TASS Simulated RADAR Reflectivity

Airborne Radar -4 deg tilt

60km x 45km window, rotated -12 deg

Darwin: TASS Simulation

Simulated Ice Water Content (g/m^3) Simulated Radar Reflectivity Factor (dBZ) Horizontal Plane at 10 km (32800 ft) AGL Horizontal Plane at 10 km (32800 ft) AGL 20 20 PRCP RRF 3 50 2.75 40 10 2.5 10 33 2.25 23 2 10 1.75 1.5 0 0 1.25 1 (ш<u>¥</u> 10 ≻ 0.75 (m ¥-10 ⊁ 0.5 0.25 Ω -20 -20 -30 -30 -20 -10 () X (km) 20 10 -20 -10 20 10 0 X (km)

- Large areas of HIWC with RRF less than 30 dBZ
- Sustained areas (over 25km wide) of ice water greater than 1.0 g/m³ and with peak values at 3 g/m³

TASS RADAR Reflectivity Factor: y-z cross section at x = 10 km

- Most RADAR reflectivity in excess of 40 dBZ confined to lower 7km of storm
- Weak RADAR reflectivity factor at flight level (~10km AGL)

TASS Darwin Simulation: 3-D Cloud

- Viewed from South
- Multiple pulsing convective cells feed canopy overhang
- Overhanging cloud canopy much larger than active cells

TASS Darwin Simulation

 Simulation shows very light turbulence at flight level near vicinity of HIWC event

Case 2: TASS Simulation of Coastal Louisiana HIWC Event

- One of the events investigated during the recent HIWC DC-8 Flight Campaign
- Again, TASS domain confined to small region of the mesoconvective system
 - Domain configured offshore of Louisiana over the Gulf of Mexico
- Initialized from an atmospheric sounding obtained from the Operational NCEP Rapid Refresh(RAP) weather prediction model
 - Sounding for 19 August 2015, 1400 UTC
 - Location: 29 N, 91.2 W

Visible satellite imagery showing convective cells along southern edge of mesoconvective system on 19 Aug 2015

Case 2: Offshore Louisiana Coast 0000 UTC

Grid size: $\Delta x = \Delta y = \Delta z = 150m$ Grid points: 204 x 353 x 124 X*,Y*,Z*: 30*km* x 52.5*km* x 18*km*

Integration time_{max} = 2*hr* 50*min*

 $\Delta T_{pert} = 1.0K$ $R_{pert} = 3000m$, $H_{pert} = 1000m$ NcId = 75 droplets cm^{-3}

Grid rotated -15° (ie Y – coordinate along 345°)

Periodic BC at x = X⁰ and X^{*}, Open BC at y= Y^o and Y^{*}

Louisiana Case: Domain and Radar Reflectivity

52.5 km x 30 km window, rotated -15 deg

TASS Louisiana Simulation

- Large areas of HIWC with RRF less than 30 dBZ
- Sustained areas (over 20km wide) of ice water greater than 2.0 g/m³ and with peak values at 3.3 g/m³

TASS Louisiana Simulation

 Simulation shows some turbulence at flight level near vicinity of HIWC event

TASS Louisiana Simulation: 3-D Cloud

- Full domain viewed from above and from South.
- Multiple pulsing convective cells with overshooting tops feed canopy overhang

Summary

- Two cases are shown to demonstrate the feasibility of simulating HIWC events with a high-resolution convective cloud model
- HIWC conditions were demonstrated to occur in regions
 with low RADAR reflectivity
- Peak ice water contents in excess of 3 g m⁻³ were simulated at flight level. Consistent with measurements from the HIWC flight campaigns
- Simulations demonstrate large mesoconvective system canopies maintained by ensembles of pulsing convective cells