VIEW CONTRACTOR CONTRA

HAIC/HIWC: High IWC regions- Particle Size Distributions from in-situ measurements

Delphine Leroy, E. Fontaine, A. Schwarzenboeck, P. Coutris Laboratoire de Météorologie Physique (LaMP) – CNRS/UBP

J.W. Strapp, *Met Analytics Inc.*

L. Lilie, Science Engineering Associates Inc.

Julien Delanoë, LATMOS- CNRS/UVSQ

Alain Protat, Centre for Australian weather and climate

Alexei Korolev, Environment Canada

Greg McFarquhar, University of Illinois

- In situ microphysics measurements
 - Available instrumentation
 - Data treatment : Median Mass Diameter computation
- Size of ice crystals in HIWC regions Results from the field campaigns
 - Darwin dataset
 - Classical Mesoscale Convective System
 - Long-lasting Mesoscale Convective System
 - Cayenne dataset (preliminary results)

- In situ microphysics measurements
 - Available instrumentation
 - Data treatment : Median Mass Diameter computation
- Size of ice crystals in HIWC regions Results from the field campaigns
 - Darwin dataset
 - Classical Mesoscale Convective System
 - Long-lasting Mesoscale Convective System
 - Cayenne dataset (preliminary results)

Instrumentation

2D-S

Individual ice crystals characteristics

Optical Array Probes

10 - 1280 µm

100 - 6400 µm

Isokinetic probe (IKP)

Total water content (TWC)

Individual ice crystals characteristics

- In situ microphysics measurements
 - Available instrumentation
 - Data treatment : Median Mass Diameter computation
- Size of ice crystals in HIWC regions Results from the field campaigns
 - Darwin dataset
 - Classical Mesoscale Convective System
 - Long-lasting Mesoscale Convective System
 - Cayenne dataset (preliminary results)

Data treatment

1) Size retrieval

Concentration (#/L/µm)

 $Deq=\sqrt{4*S/\pi}$

- In situ microphysics measurements
 - Available instrumentation
 - Data treatment : Median Mass Diameter computation
- Size of ice crystals in HIWC regions Results from the field campaigns
 - Darwin dataset
 - Classical Mesoscale Convective System
 - Long-lasting Mesoscale Convective System
 - Cayenne dataset (preliminary results)

Darwin dataset Flight 16 example

HAIC . HIWC International Field Campaign

In the -55 to -45°C temperature range, Median Mass Diameters tends to decrease with increasing Total Water Content.

- The higher the TWC, the smaller the ice crystals
- → MMDs are larger than 150 µm.

(Ice crystals smaller than 100 µm accounts for less than 15% of the total mass)

Temperature range : -45°C to -35°C

Temperature range : -35°C to -25°C

Temperature range : -25°C to -15°C

➔ For all temperature ranges, the Median Mass Diameters decrease with increasing Total Water Contents

➔ For a given range of TWC, MMDs decrease with decreasing temperatures

- In situ microphysics measurements
 - Available instrumentation
 - Data treatment : Median Mass Diameter computation
- Size of ice crystals in HIWC regions Results from the field campaigns
 - Darwin dataset
 - Classical Mesoscale Convective System
 - Long-lasting Mesoscale Convective System
 - Cayenne dataset (preliminary results)

Darwin dataset Flight 13 example

Darwin dataset Flight 13 example

INSU Observer & comprendre

CINIS

UNI>ERSITE BLAISE PASCAL

Darwin dataset

Flight 13 compared to flight 16 – Particle size distributions and ice crystal shapes

Darwin dataset

Flight 13 compared to flight 16 – Mass size distributions

Flight 16 : MMD ~ 300 µm

Flight 13 : MMD ~ 550 µm

Darwin dataset

5s average data data from 2 flights in the **same long-lasting** MCS:

In contrast to the previous results: here MMDs seem to increase when increasing TWC

➔ The higher the TWC, the larger the ice crystals

Dependancy of MMDs with temperature is not obvious

• Ice crystal size in HIWC areas :

		Isolated typical MCS	Long-lasting MCS
, kin	Median Mass Diameter range for TWC > 1g/m ³	170 – 700 µm	300 – 1200 μm
	MMD variation with TWC	MMDs decrease with increasing TWCs	MMDs ' increase' with increasing TWCs
	MMD variation with temperature	MMDs decrease with decreasing temperatures	Not obvious

- In situ microphysics measurements
 - Available instrumentation
 - Data treatment : Median Mass Diameter computation
- Size of ice crystals in HIWC regions Results from the field campaigns
 - Darwin dataset
 - Classical Mesoscale Convective System
 - Long-lasting Mesoscale Convective System
 - Cayenne dataset (preliminary results)

Darwin versus Cayenne dataset: T<15°C

For temperatures below -20°C, MMDs are in the same range for Darwin and Cayenne

Darwin versus Cayenne dataset: al

At warmer temperatures (around -10°C), the range of possible MMDs is clearly wider

Conclusions : Ice crystal sizes in HIWC areas

		Isolated MCS	Long-lasting MCS
porvin•Austrolio	Median Mass Diameter range for TWC > 1g/m ³	170 – 700 µm	300 – 1200 µm
SAFIRE Falcon 20	MMD variation with TWC	MMDs decrease with increasing TWCs	MMDs increase with increasing TWCs
AIC •HIWC ernational Field Campaign	MMD variation with temperature	MMDs decrease with decreasing temperatures	Not obvious

AIC •HI

Darwin's results are confirmed for temperatures below -20 °C

At warmer temperatures (around -10°C), the range of possible MMDs is clearly wider

Conclusions : Ice crystal size in HIWC areas...

And what about liquid water in MCS?

CDP : cloud droplet probe → Provides particle counts in the 2-50µm size range

+ Rosemount Ice Detector (and LWC probes).

Cayenne dataset Flight 16

2DS images

20:38 Time (UTC) 20:39

20:40

20:41

20:42

20:34

20:35

20:36

20:37

Cayenne dataset confirm that liquid water still exist at temperatures as low as -30°c in MCSs