On the Origin of High Altitude High Ice Water Content Regions in Oceanic Deep Convection

Alexei V. Korolev, (Environment Canada)

Alfons Schwarzenboeck (CNRS); Andrew Ackerman, (NASA Goddard Institute for Space Studies); Julien Delanoe (CNRS); Fabien Dezitter (Airbus Operations SAS); Christopher Dumont (Federal Aviation Administration); Ann Fridlind (NASA Goddard Institute for Space Studies); Alice Grandin (Airbus); Lyle Lilie (Science Engineering Associates Inc); Rodney Potts, Alain Protat (BoM); Adam Varble (University of Utah); J. Walter Strapp (Met Analytics Inc.); Edward Zipser, (University of Utah)

> HAIC-HIWC Science Team Meting Melbourne, 09-12 November 2015

Overview

- 1. Microphysical properties of HIWC cloud regions
 - (a). Effect of dynamics on formation of HIWC
 - (b). Extinction coefficient
 - (c). Characteristic sizes (MMD, D_{mean}, D2_{mean}, D3_{mean})
 - (d). Size distributions and its relation to IWC and U_Z
 - (e). Integral particle size and phase relaxation time
 - (f). Ice particle habits in HIWC and stratiform regions
 - (g). Ice particle aggregation
- 2. Conceptual model of HIWC cloud region formation

Motivation

- 1. Understand processes resulting in formation of high ice water content cloud regions in MCSs
- 2. Identify main microphysical properties attributed to HIWC cloud regions
- Obtain knowledge to support verifications and interpretation of remote sensing tools (satellite, radar) for regulatory objectives
- 4. Support further development of cloud simulations

Flight 23 was performed near the north-east size of the MCS

- Correlation between vertical velocity and particle concentration and HIWC cloud regions
- Consistent with previous similar observations
- Stratiform regions: Uz ~ 0m/s, IWC<1g/m³, N<200L-1
- Convective regions: |Uz| >1m/s, IWC>1÷5g/m³, N>500L-1
- Characteristic horizontal size of convective regions $\Delta L \sim 10^2 10^3 m$

Correlation between U_Z, N and IWC

Correlation between U_Z, N and IWC

Vertical and horizontal extend of convective cells

Extinction coefficient (β)

- $1 \text{ km}^{-1} < \beta < 20 \text{ km}^{-1}$ in stratiform regions
- $30 \text{km}^{-1} < \beta < 80 \text{km}^{-1}$ in HIWC convective regions

Examples of distributions of extinction coefficient in stratiform and convective cloud regions

- Both in stratiform and HIWC cloud regions extinction coefficient is mainly contributed by particles from 200<D<600µm size range.
- The distribution $\beta(D)$ has maximum at D \approx 300-400 μ m

Comparisons of extinction coefficient calculated from 2D measurements and that retrieved from the RASTA data

- Good agreement between 2D and RASTA extinction in stratiform regions with β <20km⁻¹
- For the convective regions with HIWC the separation of β is increasing

Size and mass distributions

size distribution mass distribution

D_{mod}~200÷300μm D_{mod}~200÷400μm both convective & stratiform both convective & stratiform

convective (HIWC) regions 10⁴ Size distribution 10² T= -11C 10⁰ N(D) (f⁻¹µm⁻¹) 10 10⁻⁶ 10-8 10¹ 10² 10³ Diameter (µm) x 10 Mass distribution T= -11C (D) (gm⁻³µm⁻¹) M(D) 400 600 800 1000 1200 1400 1600 1800 200 2000

stratiform regions

Median Mass Diameter

 $\mathsf{D}_{\mathsf{M}\mathsf{M}}$ drops down in HIWC cloud regions

Median Mass Diameter

- $200 < D_{MM} < 600 \mu m$ in HIWC cloud regions
- $300 < D_{MM} < 1500 \mu m$ in stratiform cloud regions
- D_{MM} depends on altitude (or T), cloud dynamics and age

DMmedianCOMP (um)

Stratiform regions

MMD in HIWC convective regions depends on altitude.

However in stratiform regions there is no clear correlation between MMD and altitude (or T)

Other characteristic sizes

Integral particle size

Integral radius $N_i r_i$ determined the rate of the water vapour depletion by ice particles and maintenance of mixed phase

Time of phase relaxation

FIG. 6. Time of phase relaxation vs $N_{t}\overline{r}_{i}$ in ice clouds for different vertical velocities; $T = -10^{\circ}$ C; P = 680 mb. Gray color indicates $N_{t}\overline{r}_{i}$ typical for the ice clouds.

$\tau_p = \frac{1}{a_0 u_z + b_i N_i \bar{r_i}}$

Time of phase relaxation determines the characteristic time of relative humidity approaching to its equilibrium value S_{qsi}

$$S_{qs\ i} = \frac{a_{0i}u_z}{b_i N_i \bar{r_i}}$$

If $u_z=0$, then $S_{qsi} \rightarrow 0$ i.e. in stratiform region reaching saturation over ice requires minutes to tens of minutes

Threshold vertical velocity for activation of liquid in pre-existing ice cloud and maintenance of mixed phase

 $u_z > u_z^*$ condition for activation of liquid water in ice cloud

For *Nr* found in convective regions the threshold vertical velocity ranges from few m/s to few tens on m/s. Such high U_z^* suggests low probability of finding mixed phase in HIWC regions, unless very high updrafts Uz>15-20m/s

Korolev & Mazin (JAS, 2003)

Modeling of glaciation liquid cloud during ascent

Fig. 3.6. Modeling of changes of (a) LWC and IWC; (b) cloud particle sizes; (c) droplet and ice concentrations; (d) temperature during adiabatic ascent. Ice particles were initiated at T=-5 C, ice particle concentration 1 cm⁻³, vertical velocity u_z =1 m/s; H_0 =500 m, T_0 =15 C. Results are for diffusional growth only.

HIWC science plan

2DS imagery from HIWC convective cloud region

T= -11C; H=7100m

2DS imagery from HIWC convective cloud region T= -11C; H=7100m

Ice particles: mainly columns, most likely formed due to Hallet-Mossop ice multiplication at lower level, NO AGGREGATES

2DS imagery from HIWC convective cloud region T= -11C; H=7100m

PIP images from convective (HIWC) cloud regions

Frozen raindrops or hail or graupel or all of them? NO AGGREGATES

2DS imagery from HIWC convective cloud region T= -24C; H=9100m

Ice particles: capped columns, no hailstones/graupel Absence of dendrites is suggestive of no mixed phase at -12<T<-18C

2DS-V; 18 February 2014; 23:13:23.98

Particle images dominated by capped columns measured by HSI from NRC Convair580 during HAIC-HIWC in Cayenne (Flight 2015-05-15 UTC time 11 30 53)

Bachalo et al., SAE, Prague, 24-June-2015

Ice particle habits formed at different T and RH

Ice particle habits in stratiform cloud regions T= -11C; H=7100m

Ice particles: mix of columns, capped columns, compact ice, aggregates

Ice particle habits in stratiform cloud regions T= -24C; H=9100m

Ice particle habits in stratiform cloud regions T= -24C; H=9100m

Ice particles: some columns, compact ice, chained aggregates

Ice particle habits in stratiform cloud regions T= -24C; H=9100m

Ice particles: mix of columns, compact ice, compact shape and chained aggregates

Aggregated particles at T= -24C level

Aggregated particles at T= -11C level

Increase of the aggregates sizes towards ground

Expected shape of ice particles aggregated in electric field

Lightning averaged over the entire flight period

Conceptual model of microstructure formation in MCS (flight 23)

Conceptual model of HIWC formation in MCSs

- HIWC in stratiform regions are formed as a result of periodic pumping of condensed water in the stratiform regions of MCSs by convective flows (2<Uz<15m/s).
- The convection originate in the warm sector of MSCs at H<5km and may extend to 12km or higher.
- HIWC regions are dynamic objects and they form as a result of balance between particle sedimentation and IWC brought up by convection

Conclusions

- Correlation between U_z and IWC suggests that HIWC is primarily formed in convective updrafts and then spread over stratiform regions of MCSs.
- Electrostatic aggregation seems to play an important role in precipitation formation in MCSs. Most ice aggregation occurs in stratiform regions.
- Conceptual model of HIWC formation is proposed.
- More data analysis is required to adjust the conceptual model.

Acknowledgements:

Data analysis supported by Environment Canada Funded by Transport Canada and FAA Data provided by CNRS