Parameterizations of HIWC/HAIC PSDs for modeling G. McFarquhar¹, S. Zhu¹, J. Um¹, J.W. Strapp², A. Schwarzenboeck³, A. V. Korolev⁴, & D. Leroy³ ¹University of Illinois, Urbana, IL ²Met Analytics, Toronto, ON ³Université Blaise Pascal, Clermont, France ⁴Environment Canada, Downsview, ON #### OUTLINE - 1. Use of gamma functions in numerical models - 2. Techniques to fit HIWC/HAIC size distributions as gamma functions - Volume of equally realizable solutions - 3. Complications with multiple modes during HIWC/HAIC - 4. Implications for model studies - 5. Shapes of small particles & radiative impacts #### **Gamma Functions** • Gamma functions used to characterize N(D) $N(D) = N_0 D^{\mu} \exp(-\lambda D)$ with N_0 intercept, λ slope and μ shape - $N_0, \mu,$ and λ determined from observed size distributions (SDs) # Determining N_0 , μ and λ - N_0 , μ , and λ calculated through Incomplete Gamma Fit (IGF) developed at UI that minimizes χ^2 difference between fit and observed moments (any 3 moments can be chosen) - ◆ Accounts for fact measured SDs do not cover complete range of particle sizes - \bullet Any (N_0,μ,λ) within $\Delta\chi^2$ of minimum χ^2 regarded as equally realizable solution - $\Delta \chi^2$ determined from statistical uncertainty on measured moments on which fit based - \bullet $\mu > -1$ and $\lambda > 0$ are forced # Volume of Equally Realizable Solutions # Volume of Equally Realizable Solutions Broad range of $N_0/\mu/\lambda$ that fit SD well within allowed tolerance → Tolerance determined by uncertainty in measured SD # **Apply to HIWC Project** - Phase I of High Ice Water Content (HIWC) conducted out of Darwin, Australia - HIWC designed to investigate high IWCs in convective clouds over tropical oceans occurring in absence of radar echoes > 20 dBZ - Lots of small ice crystals; what causes them? - Models will play critical role in hypothesis testing: - Are parameterizations based on data collected in conventional conditions appropriate for such model simulations? #### **HIWC Data** - Size distributions measured by 2DS (25 μm < D < 1 mm) & PIP (D > 1 mm), bulk water content measured by Isokinetic Evaporator Probe (IKP) installed on French Falcon - Examine a PSD from flight on 18 Feb 2014 #### **HIWC Data** - Size distributions measured by 2DS (25 μm < D < 1 mm) & PIP (D > 1 mm), bulk water content measured by Isokinetic Evaporator Probe (IKP) installed on French Falcon - Examine a PSD from flight on 18 Feb 2014 ### Volume of Equally Realizable Solutions Look at single SD from HIWC, and apply IGF to generate volume of equally realizable N_0, λ, μ # Volume of Equally Realizable Solutions Randomly select $N_0/\mu/\lambda$ value from volume - large spread especially for $D < 150~\mu m$ # Distribution moments related to µphysics process rates - calculate M(2.41) by randomly choosing values from N_0 - μ - λ volume - calculated moments match observed moments ■ But, many of the HIWC SDs have multiple modes! - But, many of the HIWC SDs have multiple modes! - Gamma fit does not fit data well - SDs from HIWC have frequent multiple modes - → application of IGF difficult Peaks in mass distributions are especially prominent Peaks in mass distributions are especially prominent > apply IGF to modes separately # Frequency of Multi-mode distributions # Fits to Multiple Modes 2-mode fit visually provides better match to observed SD # **Fits to Multiple Modes** ■ 2-mode fit does better job than 1-mode fit representing some moments of PSD # **Fits to Multiple Modes** ■ 2-mode fit does better job than 1-mode fit representing some moments of PSD # **Radiative Impact of Small Particles** - DC3 observations (Stith et al. 2015) show aggregates of frozen drops in anvil surrounded by frozen drops - What does HIWC data show? - What are radiative impacts of different shapes? # Relation to Larger Crystal PSDs # Summary - Developed technique for representing N(D) as gamma function as volume of equally realizable solutions in N_0 , λ and μ phase space - Modified to account for multi-modal HIWC SDs - → don't need to separate snow & graupel - Can be applied in Monte Carlo parameterization to see how uncertainties cascade up to model predicted parameters - Looking at small particles and their radiative impact (comparison with DC3 data) - Leroy et al. (2015, part 2) increasing MMD with HIWC for flt. #13higher contribution of larger particles decreasing MMD with HIWC for flt. #16 - higher contribution of smaller particles - IKP TWP > 0.1 g/m^3 , -55 < T < -35 °C - Relative contribution of # particles in diff. size range to HIWC - Classify each flight into two groups - i. higher contributions of smaller particles to HIWC - ii. higher contributions of larger particles to HIWC - Trend change @~ 500 μm - Group 1 (4, 7, 12, 13) distinct from group 2 (2, 6, 8, 10, 14, 16, 19, 22) - Group1: Contrib. # large particle (Deq>500) to TWC increase with TWC - Group2: Contrib. # small particle (Deq<500) to TWC increase with TWC - Related to multiple mode of PSDs, MMD - Group 1 (4, 7, 12, 13) distinct from group 2 (2, 6, 8, 10, 14, 16, 19, 22) - Relatively lower TWC sampled for flight 4 & 7 - Flight 12 & 13 distinct from other flights - Diff. formation mechanism? Diff Freezing? Aerosols? - Further analysis...