Parameterizations of HIWC/HAIC PSDs for modeling

G. McFarquhar¹, S. Zhu¹, J. Um¹, J.W. Strapp², A. Schwarzenboeck³, A. V. Korolev⁴, & D. Leroy³

¹University of Illinois, Urbana, IL

²Met Analytics, Toronto, ON

³Université Blaise Pascal, Clermont, France

⁴Environment Canada, Downsview, ON

OUTLINE

- 1. Use of gamma functions in numerical models
- 2. Techniques to fit HIWC/HAIC size distributions as gamma functions
 - Volume of equally realizable solutions
- 3. Complications with multiple modes during HIWC/HAIC
- 4. Implications for model studies
- 5. Shapes of small particles & radiative impacts

Gamma Functions

• Gamma functions used to characterize N(D) $N(D) = N_0 D^{\mu} \exp(-\lambda D)$

with N_0 intercept, λ slope and μ shape

- $N_0, \mu,$ and λ determined from observed size distributions (SDs)

Determining N_0 , μ and λ

- N_0 , μ , and λ calculated through Incomplete Gamma Fit (IGF) developed at UI that minimizes χ^2 difference between fit and observed moments (any 3 moments can be chosen)
 - ◆ Accounts for fact measured SDs do not cover complete range of particle sizes
 - \bullet Any (N_0,μ,λ) within $\Delta\chi^2$ of minimum χ^2 regarded as equally realizable solution
 - $\Delta \chi^2$ determined from statistical uncertainty on measured moments on which fit based
 - \bullet $\mu > -1$ and $\lambda > 0$ are forced

Volume of Equally Realizable Solutions

Volume of Equally Realizable Solutions

Broad range of $N_0/\mu/\lambda$ that fit SD well within allowed tolerance

→ Tolerance determined by uncertainty in measured SD

Apply to HIWC Project

- Phase I of High Ice Water Content (HIWC) conducted out of Darwin, Australia
- HIWC designed to investigate high IWCs in convective clouds over tropical oceans occurring in absence of radar echoes > 20 dBZ
 - Lots of small ice crystals; what causes them?
- Models will play critical role in hypothesis testing:
 - Are parameterizations based on data collected in conventional conditions appropriate for such model simulations?

HIWC Data

- Size distributions measured by 2DS (25 μm < D < 1 mm) & PIP (D > 1 mm), bulk water content measured by Isokinetic Evaporator Probe (IKP) installed on French Falcon
- Examine a PSD from flight on 18 Feb 2014

HIWC Data

- Size distributions measured by 2DS (25 μm < D < 1 mm) & PIP (D > 1 mm), bulk water content measured by Isokinetic Evaporator Probe (IKP) installed on French Falcon
- Examine a PSD from flight on 18 Feb 2014

Volume of Equally Realizable Solutions

Look at single SD from HIWC, and apply IGF to generate volume of equally realizable N_0, λ, μ

Volume of Equally Realizable Solutions

Randomly select $N_0/\mu/\lambda$ value from volume - large spread especially for $D < 150~\mu m$

Distribution moments related to µphysics process rates

- calculate M(2.41) by randomly choosing values from N_0 - μ - λ volume
- calculated moments match observed moments

■ But, many of the HIWC SDs have multiple modes!

- But, many of the HIWC SDs have multiple modes!
- Gamma fit does not fit data well

- SDs from HIWC have frequent multiple modes
 - → application of IGF difficult

Peaks in mass distributions are especially prominent

Peaks in mass distributions are especially prominent > apply IGF to modes separately

Frequency of Multi-mode distributions

Fits to Multiple Modes

2-mode fit visually provides better match to observed SD

Fits to Multiple Modes

■ 2-mode fit does better job than 1-mode fit representing some moments of PSD

Fits to Multiple Modes

■ 2-mode fit does better job than 1-mode fit representing some moments of PSD

Radiative Impact of Small Particles

- DC3 observations
 (Stith et al. 2015)
 show aggregates of
 frozen drops in anvil
 surrounded by frozen
 drops
 - What does HIWC data show?
 - What are radiative impacts of different shapes?

Relation to Larger Crystal PSDs

Summary

- Developed technique for representing N(D) as gamma function as volume of equally realizable solutions in N_0 , λ and μ phase space
- Modified to account for multi-modal HIWC SDs
 - → don't need to separate snow & graupel
- Can be applied in Monte Carlo parameterization to see how uncertainties cascade up to model predicted parameters
- Looking at small particles and their radiative impact (comparison with DC3 data)

- Leroy et al. (2015, part 2)

increasing MMD with HIWC for flt. #13higher contribution of larger particles

decreasing MMD with HIWC for flt. #16

- higher contribution of smaller particles

- IKP TWP > 0.1 g/m^3 , -55 < T < -35 °C
- Relative contribution of # particles in diff. size range to HIWC
- Classify each flight into two groups
 - i. higher contributions of smaller particles to HIWC
 - ii. higher contributions of larger particles to HIWC

- Trend change @~ 500 μm
- Group 1 (4, 7, 12, 13) distinct from group 2 (2, 6, 8, 10, 14, 16, 19, 22)
- Group1: Contrib. # large particle (Deq>500) to TWC increase with TWC
- Group2: Contrib. # small particle (Deq<500) to TWC increase with TWC
- Related to multiple mode of PSDs, MMD

- Group 1 (4, 7, 12, 13) distinct from group 2 (2, 6, 8, 10, 14, 16, 19, 22)
- Relatively lower TWC sampled for flight 4 & 7
- Flight 12 & 13 distinct from other flights
- Diff. formation mechanism? Diff Freezing? Aerosols?
- Further analysis...