

Cayenne-2015 Data set status, NRC CV580 -Aircraft In-situ data

Cuong Nguyen, Mengistu Wolde, Matthew Bastian⁽¹⁾ Alexei Korolev⁽²⁾

> 1 - National Research Council Canada 2 - Environment Canada

HAIC-HIWC Science Team Meeting, 9-12-November-2015

Canada

Environment Environnement Canada

Outline

Basic Systems Info and Available measurements

- Systems' field Performance
- Sample Data
- Timeline Processing and Analysis

Canada

List of available measurements and sensor for Cayenne, May 2015

Parameters	Sensors
Aircraft state and Navigation	GPS: Novatel GPS (x2) IMU: Honeywell IMU (x2), AIMMS20_IMU, Litton Radioaltimeter, TIT, RPM, HP
Atmospheric state	Temperature: Rosemount (x2), AIMMS Pressure (Ps & Pd): Honeywell, 858 Air Data (alpha & beta): Rosemount 858, AIMMS20 RH: Chilled Mirror, AIMMS20, Licors (x3)

Environment Enviro Canada Canada

Environnement Canada

Cayenne Aircraft In-situ Data

Quality control procedure

- Honeywell (Hg) GPS as main clock
- Variables available from multiple sensors are corrected for timeshift issue (the most reliable sensor is selected as the reference)
- Remove outlier samples by using a median and averaging filters
- Monitor data consistency (across sensors) and detect for faulty data segments by standard statistical methods (local correlation, local standard deviation and gradient)
- Correct biases and combine measurements from different sensors to generate final products

Aircraft State Data Examples

Aircraft State Data Examples

✤ Roll (deg)

Similar performance for Roll and Heading/Yaw

Data Examples (cont.)

- Good agreement between the measurements.
- Scalar shows less variation
- 858 is slightly lower

Data Examples (cont.)

Data Examples (cont.)

Temperature (deg C)

Cayenne Aircraft In-situ Data Examples

Vertical Wind

para1: AIMMS para2: Pod

Vertical Wind (cont.)

Vertical Wind

para1: AIMMS para2: Pod

Important event: good agreement between the measurements

More wind component examples from the two sensors Wind speed

More wind component examples from the two sensors Wind direction

In general, both sensors provide correct measurements but AIMMS data shows less variation.

NRC·CNRC

Plan

- Complete data quality assessment and processing for version 2 of data Before 31-01-2016.
- Lab Technical Report 31-Mar-2016

High Ice Water Content (HIWC) Program

© Her Majesty the Queen in Right of Canada, as represented by the Minister of the Environment and the National Research Council of Canada, 2015.

The document and related information shall not be copied nor disclosed without Environment Canada' prior written authorization.

Environment Environnement Canada

