Parameterizations of HIWC/HAIC PSDs for modeling

G. McFarquhar¹, S. Zhu¹, J. Um¹, J.W. Strapp², A. Schwarzenboeck³, A. V. Korolev⁴, & D. Leroy³

¹University of Illinois, Urbana, IL ²Met Analytics, Toronto, ON ³Université Blaise Pascal, Clermont, France ⁴Environment Canada, Downsview, ON

OUTLINE

- 1. Use of gamma functions in numerical models
- 2. Techniques to fit HIWC/HAIC size distributions as gamma functions
 - Volume of equally realizable solutions
- 3. Complications with multiple modes during HIWC/HAIC
- 4. Implications for model studies
- 5. Shapes of small particles & radiative impacts

Gamma Functions

- Gamma functions used to characterize N(D) $N(D) = N_0 D^{\mu} \exp(-\lambda D)$
- with N_0 intercept, λ slope and μ shape

and λ

- N₀, μ, and λ determined from observed size distributions (SDs)
- Little attention placed on uncertainty in N₀, μ

Determining N_0 , μ and λ

- N_0 , μ , and λ calculated through Incomplete Gamma Fit (IGF) developed at UI that minimizes χ^2 difference between fit and observed moments (any 3 moments can be chosen)
 - Accounts for fact measured SDs do not cover complete range of particle sizes
 - Any (N_0,μ,λ) within $\Delta\chi^2$ of minimum χ^2 regarded as equally realizable solution
 - $\Delta \chi^2$ determined from statistical uncertainty on measured moments on which fit based
 - μ > -1 and λ > 0 are forced

Volume of Equally Realizable Solutions

Volume of Equally Realizable Solutions

Broad range of $N_0/\mu/\lambda$ that fit SD well within allowed tolerance

→ Tolerance determined by uncertainty in measured SD

Apply to HIWC Project

- Phase I of High Ice Water Content (HIWC) conducted out of Darwin, Australia
- HIWC designed to investigate high IWCs in convective clouds over tropical oceans occurring in absence of radar echoes > 20 dBZ
- Lots of small ice crystals; what causes them?
 Models will play critical role in hypothesis testing:
 - Are parameterizations based on data collected in conventional conditions appropriate for such model simulations?

HIWC Data

Size distributions measured by 2DS (25 µm < D < 1 mm) & PIP (D > 1 mm), bulk water content measured by Isokinetic Evaporator Probe (IKP) installed on French Falcon

Examine a PSD from flight on 18 Feb 2014

HIWC Data

Size distributions measured by 2DS (25 µm < D < 1 mm) & PIP (D > 1 mm), bulk water content measured by Isokinetic Evaporator Probe (IKP) installed on French Falcon

Examine a PSD from flight on 18 Feb 2014

Volume of Equally Realizable Solutions

Look at single SD from HIWC, and apply IGF to generate volume of equally realizable N_0, λ, μ

Volume of Equally Realizable Solutions

Randomly select $N_0/\mu/\lambda$ value from volume - large spread especially for D < 150 μ m

- rates
 - calculate M(2.41) by randomly choosing values from N_0 - μ - λ volume
 - calculated moments match observed moments

HIWC SDs

18-Feb-2014 22:45:21

But, many of the HIWC SDs have multiple modes!

HIWC SDs

18-Feb-2014 22:45:21

But, many of the HIWC SDs have multiple modes!
Gamma fit does not fit data well

HIWC SDs

SDs from HIWC have frequent multiple modes → application of IGF difficult

prominent

Frequency of Multi-mode distributions

Fits to Multiple Modes

2-mode fit visually provides better match to observed SD

Fits to Multiple Modes

representing some moments of PSD

Fits to Multiple Modes

representing some moments of PSD

Radiative Impact of Small Particles

DC3 observations (Stith et al. 2015) show aggregates of frozen drops in anvil surrounded by frozen drops > What does HIWC data show? What are radiative impacts of different shapes?

Relation to Larger Crystal PSDs

Summary

- Developed technique for representing N(D) as gamma function as volume of equally realizable solutions in N_0 , λ and μ phase space
- Modified to account for multi-modal HIWC SDs → don't need to separate snow & graupel
- Can be applied in Monte Carlo parameterization to see how uncertainties cascade up to model predicted parameters
- Looking at small particles and their radiative impact (comparison with DC3 data)

Flight 13 Presence of larger particle with HIWC

Increase/decrease rate of CDP N with **TWC diff. for** flights

particle with HIWC

N CDP

N 10 < Deq < 100 μm

N 1000 μm < Deq

- IKP TWP > 0.1 g/m³, -55 < T < -35 °C

- Relative contribution of # particles in diff. size range to HIWC
- Classify each flight into two groups
 i. higher contributions of smaller particles to HIWC
 ii. higher contributions of larger particles to HIWC

- Trend change @~ 500 μm
- Group 1 (4, 7, 12, 13) distinct from group 2 (2, 6, 8, 10, 14, 16, 19, 22)
- Group1: Contrib. # large particle (Deq>500) to TWC increase with TWC
- Group2: Contrib. # small particle (Deq<500) to TWC increase with TWC
- Related to multiple mode of PSDs, MMD

- Group 1 (4, 7, 12, 13) distinct from group 2 (2, 6, 8, 10, 14, 16, 19, 22)
- Relatively lower TWC sampled for flight 4 & 7
- Flight 12 & 13 distinct from other flights
- Diff. formation mechanism? Diff Freezing? Aerosols?
- Further analysis...