Science and Aviation Objectives

Alexei Korolev¹ and Mengistu Wolde²

¹Environment Canada

²National Research Council

HAIC-HIWC Science Team Meeting, Manhattan, 10-March-2015

The NRC Convair-580 flight operation and data collection strategy will be aligned to support the aviation objectives:

Aviation Objectives	Priority
E1: Characterize statistics of TWC and particle size for FAA/EASA regulatory objectives	P0
E2: Flight-Deck Recognition of the High-IWC Environment	P2
E3: Development of Tools to Nowcast the High-IWC Environment	P1

The Convair-580 has a suite of tools to support E1 & E2

Science Objectives

Science Objectives	Priority
S1: Characterize the microphysical and thermodynamic properties of core	P1
or near-core regions	
S2: Determine the small ice particle formation mechanisms and	P2
importance to bulk microphysical properties	
S3: Determine the temporal and spatial evolution of the mixed-phase	P2
S4: Validate and improve ground remote sensing algorithms of cloud	P2
properties	
S5: Validate and improve satellite remote sensing algorithms of cloud	P1
properties	
S6: Improve cloud resolving model simulations	P2
C7: Characterize aerosol properties in the vicinity of tropical storms	С
C8: Determine level of convection initiation	С
C9: Remote sensing signatures of high ice water content (multi-frequency	С
and multi-parameter radar, lidar and radiometer)	
C10: Development and validations of particle detector sensor (PDP)	С

- Previous studies showed that tropical storms have significant microphysical variability both in horizontal and vertical directions, which results from coupling dynamics and cloud microphysics.
- Understanding of dynamics and microphysics of convective storms from in-situ measurements can be facilitated simultaneous sampling at several levels.
- It is proposed synchronous cloud sampling by the Falcon-20 and Convair-580 at different levels.

Convair-580 primary level T=-10C optional T=+5C, 0C, -5C, -15C Falcon-20 -50C<T<-30C

- Challenges of vertical synchronization of two aircrafts flying at different speed.
- Sampling strategy need to be elaborated

Perform aerosol sampling on approach to the operation area and on the transit back to Cayenne

Attempt aligning the Convair-580 flight with the CloudSat overpasses in the vicinity of Cayenne on 18 or 25 May 2015

Aviation Objective E3: Development of Tools to Nowcast the High-IWC Environment

18-May-2015

25-May-2015

CLOUDSAT 2015/05/25 UTC CLOUDSAT ORBITAL PREDICT PLOT EPOCH DATE: Mar-8-2015

