Typical (horizontal) Resolutions

Cumulus parameterization

 Representation of effect of cumulus ensemble in climate model which has grid size not enough small to resolve them

We don't need parameterizations if we can resolve

Cumulus cloud in nature

Cumulus cloud in climate model

www.usatoday.com/weather/wcumulus.htm

AMIP (Slingo et al. 1996)

Model	Deep convection
BMRC	Кио
ССС	MCA
CNRM	Bougeault
CSIRO	MCA
CSU	AS+MCA
ECMWF	Tiedtke
GLA	AS
GSFC	RAS
LMD	Kuo+MCA
MRI	AS
NCAR	Hack
NMC	Kuo/Tiedtke
RPN	Кио
UGAMP	Betts-Miller
UKMO	Gregory

CMIP3 (Lin et al. 2006)

Model	Deep convection
GFDL CM2.0	RAS
GFDL CM2.1	RAS
NCAR CCSM3	ZM
NCAR PCM	ZM
GISS-AOM	Russell et al.
GISS-ER	Del Genio and Yao
MIROC-hires	Pan and Randall
MIROC-medres	Pan and Randall
MRI	Pan and Randall
СССМА	ZM
MPI	Tiedtke
IPSL	Emanuel
CNRM	Bougeault
CSIRO	Gregory and Rowntree

*red: mass flux scheme

Where are they in the equations?

* Large-scale budget equations for dry static energy and water vapor

$$\frac{\partial \bar{s}}{\partial t} + \bar{\vec{v}} \cdot \nabla \bar{s} + \bar{w} \frac{\partial \bar{s}}{\partial z} = -\frac{1}{\bar{\rho}} \frac{\partial}{\partial z} [M_{u}s_{u} + M_{d}s_{d} - (M_{u} + M_{d})\bar{s}] \\ -\frac{1}{\bar{\rho}} \frac{\partial}{\partial z} (\bar{\rho} \bar{w}' s')_{tu} + \underline{L}(\bar{c} - \bar{e}) + \overline{Q_{R}}$$
Tiedtke (1989)

$$\begin{split} \frac{\partial \bar{q}}{\partial t} + \bar{\vec{v}} \cdot \nabla \bar{q} + \bar{w} \frac{\partial \bar{q}}{\partial z} & - \text{Cumulus parameterization} \\ &= -\frac{1}{\bar{\rho}} \frac{\partial}{\partial z} [M_u q_u + M_d q_d - (M_u + M_d) \bar{q}] \\ &- \frac{1}{\bar{\rho}} \frac{\partial}{\partial z} (\bar{\rho} \overline{w' q'})_{tu} - \underline{(\bar{c} - \bar{e})} & \text{A: mass flux} \\ &- \frac{1}{\bar{\rho}} \frac{\partial}{\partial z} (\bar{\rho} \overline{w' q'})_{tu} - \underline{(\bar{c} - \bar{e})} & \text{A: mass flux} \\ &\text{A: u: updraft} \\ &\text{A: downdraft} \end{split}$$

 $M_{u/d}$, $S_{u/d}$, $q_{u/d}$, C, e: determined by cumulus parameterization

Cumulus Momentum Transport

• Dynamic Impacts

Shapiro and Stevens (1980)

fractional cloud coverage

momentum
$$\mathbf{X}_{c} = -M_{c}\frac{\partial \bar{\mathbf{v}}}{\partial p} + \delta(\mathbf{v}_{D} - \bar{\mathbf{v}}) + \sigma\left(\frac{1}{\rho}\nabla p^{*}\right)$$

acceleration

Momentum Budget Residual:

$$\mathbf{X} = (X, Y) \equiv \frac{\partial \overline{\mathbf{v}}}{\partial t} + \overline{\mathbf{v}} \cdot \nabla \overline{\mathbf{v}} + \overline{\omega} \frac{\partial \overline{\mathbf{v}}}{\partial p} + \nabla \overline{\phi} + \lambda \mathbf{k} \times \overline{\mathbf{v}}$$

$$= -\nabla \cdot \overline{\mathbf{v}' \mathbf{v}'} - \frac{\partial \overline{\mathbf{v}' \omega'}}{\partial p},$$
(3)

where ϕ is the geopotential height, λ the Coriolis parameter, – the area ensemble mean, and ' the convective-scale components.

<u>Cloud model for updraft</u> :entraining-detraining plume model

For normalized mass flux (η), moist static energy(h), total water vapor(q^t), and vertical velocity (w)

 \sim

$$\frac{\partial \eta}{\partial z} = (\varepsilon - \delta)\eta \qquad \qquad \frac{1}{2} \frac{\partial w_u^2}{\partial z} = aB_u - b\varepsilon w_u^2$$
$$M_u = \eta M_b : Closure \qquad \qquad \frac{1}{2} \frac{\partial w_u^2}{\partial z} = aB_u - b\varepsilon w_u^2$$
$$B_u = \frac{f}{\overline{T}_v} (T_v_u - \overline{T}_v) - gl_u$$
$$B_u = \frac{g}{\overline{T}_v} (T_v_u - \overline{T}_v) - gl_u$$

Equations for updraft properties

$$\frac{\partial \eta}{\partial z} = (\varepsilon - \delta)\eta$$
$$\frac{\partial h_u}{\partial z} = -\varepsilon (h_u - \bar{h})$$
$$\frac{\partial q_u^t}{\partial z} = -\varepsilon (q_u^t - \bar{q}^t) - g_p$$
$$\frac{1}{2} \frac{\partial w_u^2}{\partial z} = aB_u - b\varepsilon w_u^2$$

Entrainment rate (sub-cloud layer)

$$\varepsilon \cong c_e \frac{1}{z}, c_e = 0.55$$

Siebesma and Teixeira (2000)

Entrainment rate (cloud layer)

$$\varepsilon = \frac{C_{\varepsilon}a}{W_{u}^{2}}B_{u} \qquad \text{Gregory (2001)}$$

Kuang and Bretherton (2006) – CSRM data

Climate Model Development strategy

Arakawa (2004)

Some Classical schemes for GCM:

• Cumulus (unresolved) effects directly related to resolved processes (e.g., Kuo 1965, 1974)

Instantaneous adjustment of vertical profiles to quasineutral states.
(e.g., Manabe et al. 1965; Arakawa & Schubert 1974; Lord et al. 1982)

•Relaxed, delayed or triggered adjustment of vertical profiles toward quasi-neutral states. (e.g., Betts and Miller 1986; Emanual 1991; Moorthi and Suarez 1992; Randall and Pan 1993)

Hierarchy of data for parameterization development

- Level 0 (forcing data to both SCM/CSRM)
 - Horizontal/vertical advection of T, q, ql, qi, qa
 - Any kinds of error statistics are highly required (e.g. ensemble of forcing data)
- Level 1 (results from model, not from parameterization)
 - Profiles of T, q, ql, qi, qa (grid mean/sub-grid scale distribution)
 - Surface/TOA radiation budget
 - Cloud type classification as function of MJO regime
 - Process-oriented diagnostics (emergency properties): through data assimilation?
- Level 2 (bulk properties of parameterized cumulus)
 - Mass flux ("grid averaged" in-cloud density, vertical velocity, and cloud fraction)
 - Cloud base, echo top height
 - Well-validated CSRM data could be also used
- Level 3 (inside parameterized cumulus)
 - Entrainment/detrainment rate, buoyancy, plume radius, vertical velocity, T, q (Raman lidar?)
 - TKE in boundary layer (sub-grid scale distribution of vertical velocity)
 - Microphysical properties as source of stratiform anvil
 - Mostly, well-validated CSRM data should be used (assumed low possibility this could be observed directly in a useful manner)
 - Some samples (simultaneous observations of in-cloud T, q)

More useful For develop ment

Issues

• Representative scale

 From point to averaged: time-averaging (maybe consistent to stationary assumption)

• Do we need any practices to derive required quantity before DYNAMO?

Clouds in the climate system Cumulus Convection Plays a Central Role

- Coupling through heat of condensation/evaporation; Redistribution of sensible/ latent heat and momentum
- 2. Reflection, absorption, and emission of radiation
- Influencing ground hydro.
 processes via precipitation
- Influencing couplings of the atmosphere and ocean (ground) via modification of radiation and PBL processes.

(Arakawa 1975, 2004)

Flash Back: The Representation of Cumulus Convection in Numerical Weather Prediction (NWP) and General Circulation Models (GCMs)

- The representation of cumulus convection is also known as cumulus parameterization.
- Updated definition of the cumulus parameterization problem: The problem of formulating the statistical effects of moist convection to obtain a closed system for predicting weather and climate. (Arakawa 2004)

Cumulus parameterization was introduced in the early 1960s

Charney and Eliassen (1964) "Since a self-consistent theory of turbulent cumulus convection in an anisotropic mean field does not exist, one is forced to parameterize the process"

Manabe et al. (1965) "...we used a simple convective adjustment of temperature and water vapor as a substitute for the actual convective process."

Tropical Cyclone Modeling **Ooyama (1964)** "... it is hypothesized that the statistical distribution and mean intensity of the cloud convection are controlled by the large-scale convergence of the warm and moist air in a surface layer,..."

General Circulation Modeling; the first application of the concept to a moist numerical model of the atmosphere.

Ooyama (1969) is recognized as the first successful simulations of tropical cyclone development.

Impacts of randomness on a dynamical system, an example with Lorenz 63

Tung et al. (2008)

dt

$$\frac{dx}{dt} = -\sigma(x - y),$$
$$\frac{dy}{dt} = rx - y - xz + D\eta(t),$$
$$\frac{dz}{dt} = xy - bz,$$

where $D\eta(t)$ is a white Gaussian noise term with mean 0 and variance D^2 , $\sigma = 10$, and b = 8/3.

for $r \in (24.06, 24.74)$, system has two stable fixed points and a strange attractor

For $r \in (13.926, 24.06)$, the clean system has two stable fixed point attractors and metastable chaos.

A phase diagram *D* versus *r* illustrating the observed asymptotic dynamics of the noisy Lorenz system for $r \le 24.05$.

Region I: noisy dynamics around the two fixed point solutions;

Region II: noise-induced chaos; Region III: intermittency.

R = 23.6, D = 0.2Region I, noisy fixed point

Some thoughts from the previous exercise

- The unresolved organized cumulus convection may act like randomness on the resolved scales in a NWP model or GCM.
- The interaction may alter the solutions of the model dramatically, depending on the strength of the noise.
- The first step in solving the cumulus parameterization problem is to form a principal closure assumption which constrains the existence and overall intensity of cumulus activity.

A very useful additional closure assumption would be a 'cloud model'

• Thermodynamic Impacts

Ooyama (1971), Arakawa and Schubert (1974), Yanai et al. (1973)

temperature
$$Q_{1c} = -M_c \frac{\partial \bar{s}}{\partial p} + \delta(s_D - \bar{s} - Ll_D)$$

 M_C cloud mass flux

 δ cloud-top detrainment

M large-scale mass flux

moisture
$$Q_{2c} = LM_c \frac{\partial q}{\partial p} - L\delta(q_D - \bar{q} + l_D)$$

• Dynamic Impacts
Shapiro and Stevens (1980)
momentum $\mathbf{X}_c = -M_c \frac{\partial \bar{\mathbf{v}}}{\partial p} + \delta(\mathbf{v}_D - \bar{\mathbf{v}}) + \sigma\left(\frac{1}{\rho} \nabla p^*\right)$
Large-scale grid points
Large-scale grid points
Subgrid-scale domain

Diagnostic studies of cumulus activity based on observed large-scale budgets

Apparent Heat Source: (Yanai et al. 1973)

$$Q_{1} \equiv c_{p} \left(\frac{p}{p_{o}}\right)^{\kappa} \left(\frac{\partial \overline{\theta}}{\partial t} + \overline{\mathbf{v}} \cdot \nabla \overline{\theta} + \overline{\omega} \frac{\partial \overline{\theta}}{\partial p}\right)$$
$$= Q_{R} + L(\overline{c} - \overline{e}) - \nabla \cdot \overline{s' \mathbf{v}'} - \frac{\partial \overline{s' \omega'}}{\partial p}$$

(1)

1st law of thermodynamics

Apparent Moisture Sink:

Mass conservation
of water contents
$$Q_{2} \equiv -L\left(\frac{\partial \overline{q}}{\partial t} + \overline{\mathbf{v}} \cdot \nabla \overline{q} + \overline{\omega} \frac{\partial \overline{q}}{\partial p}\right)$$

$$= L(\overline{c} - \overline{e}) + \nabla \cdot \overline{q' \mathbf{v}'} + \frac{\partial \overline{q' \omega'}}{\partial p},$$
(2)

θ: potential temperature; ω the vertical *p*-velocity ; $p_0 = 1000$ hPa ; $\kappa = R/c_p$ with *R* the gas constant of dry air ; Q_R the radiative heating rate ; *c* and *e* are the rates of condensation and evaporation (of cloud water) per unit mass of air.

Q, (cal g !) ANALYSIS OF RELEASED HEAT mb 200 BY CONDENSATION -012 -0-43 11.13 7.5 400 -0.52 $(Q_{j} = \frac{C_{p}}{\left(\frac{p_{0}}{p}\right)^{\frac{p_{-j}}{p}}} \left(\frac{\partial Q}{\partial t} + \nabla(\theta W) + \frac{\partial}{v_{p}}(\theta W)\right)$ 0.15 600 -0.54 -0.01 1.41 800 $Q_2 = -L\left(\frac{\partial g}{\partial t} + \nabla(gW) + \frac{\partial}{\partial p}(g\omega)\right)$ -0.24 0.18 039 0 (cal g - 1) $-Q_2$ 0 0: potential remperature 0 g: mixing natio of water vapour 200 0 0 0.03 0.27 -0.05 400 1) 3 - Umensional distribution of Q1 and Q2 085/ 2.32 0.14 600 0 **94 -0.07 0.98 3) comparison of - 1 Sty dp and observed 800 -0.82 0.69 3.00 precipitation. 1000 -4) total heat budget of "Verification area" 1500 . ca. 1960

Challenges remain...

Arakawa and Schubert (1974)

UNCERTAINTIES IN FORMULATING CLOUD AND ASSOCIATED POCESSES

Arakawa (2004)

Final Thoughts

• Ooyama (1982, 1987)

- "With further advances in numerical modeling, the interest in tropical cyclone research shifted from conceptual understanding of an idealized system to quantitative simulation of the detail of real cyclones..."
- "... the parameterization of convection is a technical problem of modeling and not at all an essential requirement for understanding tropical cyclones."
- "... one may wonder if all the exercises with parameterized convection were an unfortunate detour in the history of tropical cyclone modeling."
- In fact, concepts and understanding do not automatically emerge from high-resolution modeling.

Cloud model of mass flux cumulus parameterizations

<u>Cloud model for updraft</u> :entraining-detraining plume model

What we have: η, h_u, q^t_u, w_u² What we need: M_u, s_u, q_u, c, e

$$M_u = \eta M_b : Closure$$

* Large-scale budget equations for dry static energy and water vapor

Properties of originating parcel

Cloud layer

