

DEEPWAVE Rayleigh and Sodium Lidar Overview DEEPWAVE Workshop, Boulder

Biff Williams GATS, Inc.
23 Oct 2014

UV, Na, and Double-Edge Profiles

Na lidar:

high-resolution spectroscopy

Na spectrum, DF spectrum, 3 transmit frequencies

DEMOF edges and Rayleigh/aerosol returned spectrum

Ground Test of GATS, 3 frequency, 4, 1-4.6UT Dec 21,2013

Ground Test ot Gats, 3 frequency, 4,1-4.6UT Dec 21,2013

Rayleigh lidar data products

- Temperatures and densities in upper stratosphere/mesosphere
- Measure relative density with UV beam, integrate density to get temperature from assumed temperature start point at top of profile
- Start point affects top 1-2 scale heights until integration converges
- Density is relative measurement, use radiosondes to calibrate?
- Temperature profile needs good start temperature at $\sim 70 \mathrm{~km}$
- Aerosols cause issues from 20-30km, luckily NZ has low aerosol loading
- 20-75km coverage integrating whole flight (~ 5 hours)
- 20-65km coverage with 30 min integration
- 20-55km coverage for larger waves (1 K error at 45 km) with 5 min integration
- Can look at signal variations (density/aerosol layers/high cirrus/PSC) at high resolution (200 m hor., 37 m vert.) from $15-25 \mathrm{~km}$
- Good data all flights except rf01 (no viewport), rf02 (bad connection in UV receiver), rf15 (daytime)

Na lidar data products

- Na density:
- Layer from 80-105km with sharp bottom side gradient
- Good tracer of short period GW activity
- Shows GW presence and vertical structure
- Difficult to quantify due to Na chemistry
- Useful data all flights except rf01 (no viewport), rf15 (daytime)
- Real time plots in data catalog starting rf16
- Turns produce a vertical shift in real-time plots
- Star, moon, laser issues produce vertical stripes in plots

Na lidar data products

- Mesopause-region temperatures from Na beams
- More quantitative but doesn't resolve all the waves
- Tmapper has better time resolution integrated over $87 \mathrm{~km}+-5 \mathrm{~km}$ altitude
- Na lidar has vertical resolution (3km from 80-105km)
- Spectral measurement, does not assume hydrostatic equilibrium
- Pulsed Na beam has better altitude but worse time resolution
- Scanned beam has more signal but lower altitude resolution
- Cross talk between pulsed and scanned Na beam fixed between rf08 and rf09, temperatures more accurate after this
- Useful data rf09-rf14, rf16-rf20
- Measured crosstalk signal, so data from rf02-rf08 may be correctable
- Still working on temperature calibration

Na Lidar: Double-Edge Strat. Receiver

- Vertical winds $15-25 \mathrm{~km}$ from Double-Edge filter
- Filter has taken data rf02-rf14, rf16-20 with expected signal levels
- First deployment of this technique
- Laser frequency control not as good on the airplane as on the ground (vibration, turbulence) or during test flights (hanger)
- Will likely only see large wave events (>+-3 m/s)
- Careful analysis needed

rf22: Strong MW 20 to 85km

- Katrina will discuss Na data in more detail for rf22 and rf24
- Mountain wave growing strongly from 20 to $85 \mathrm{~km}, 25 \mathrm{~K}$ amplitude at 55 km
- Visible in Rayleigh, Na and Tmapper for 4 passes over the mountains

rf22: Strong MW to 85km (cont.)

- Good agreement with ECMWF 9Zmodel forecast
- Wave fronts move upwards to the west with increasing vertical wavelength
- Smaller scale wave structures at 172-173E at 30km
- Flatter wave structures downstream to east

rf16: MW breaking secondary wave generation

- Strongest MW at flight level, likely breaking above
- Lidar data: crossing waves going east and west from $30-55 \mathrm{~km}$ in lidar data on west side, flatter wave structures downstream to east
- WRF predicts crossing waves upstream, flatter structures downstream

rf04, rf13: possible medium scale MW

rf12, rf26: possible small-scale MW

MW in Lauder lidar

- rf26: Bernd's Rayleigh system often sees persistent temperature layers with minimal movement in height
- GV lidar sees persistent highly inclined layers
- Likely GW's with zero horizontal phase speed

rf19: Non-orographic GW

- Southern Ocean, multiple passes
- Phase fronts flattening with height, +-25 K scale
- Rapid increase in amplitude from $35-60 \mathrm{~km}$

rf25: Non-orographic GW

- Southern Ocean, one long down-and-back
- Medium scale wave: phase fronts flattening with height
- Na layer bottom side rises as we went south
- Long horizontal wavelength wave inclined downward as we go south

rf24: Non-orographic GW

- Southern Ocean, multiple offset passes
- Vertical wavelength increasing with altitude
- Possible Na layer response, phase tilt matches
- Jet produced?

rf07: Non-orographic or lee GW

- Eastern Ocean, rectangular pattern
- Medium scale waves: phase tilts upward with altitude
- Na layer active, difficult to match wave fronts
- Storm produced?

rf17: southern ocean GW:

Southern ocean: opposite phase tilt at 40 km and 80 km

Science Results and Conclusion

- Significant waves in middle atmosphere ($20-60 \mathrm{~km}$) on 13 out of 23 flights at 100km+ horizontal wavelengths
- Several nights with waves at smaller scales, working on re-analysis, may be more
- Deep mountain wave propagation: 6 flights
- MW penetrate to 50 km on rf04, rf12, rf13, rf16, rf22, rf26
- rf23: Auckland island lee waves: airplane descended, no lidar data
- Ground-based Rayleigh lidar at Lauder sees fixed layers when MW present.
- Waves reach end of most legs at full strength, go farther upstream than I expected
- Going farther upstream and downstream would have been better
- rf16: MW breaking -> secondary wave gen. at smaller scales
- Good comparison with model predictions on rf16 and rf22
- Non-orographic waves (southern, eastern, Tasman oceans)
- Reach 50km on 7 flights: rf06, rf07, rf17, rf18, rf19, rf24, rf25
- Still need to look at models and AIRS data for most flights

