Propagation of Gravity Waves in WRF

Christopher G. Kruse Ronald B. Smith

Recent Work

1. Continuous WRF simulation for entire DEEPWAVE period

2. High resolution WRF simulations of RF04 and RF09
– Deep propagation observed for RF04, not for RF09

Long Run: Details

 Forced by ECMWF (~15-km) analysis grids (Thanks Andreas)

• Run from 24 May – 31 July

- Domain:
 - 6-km Resolution
 - 1 hPa top (~45 km MSL)
 - 10 km damping layer

Long Run: Issues

- Used Adaptive time stepping
 Simulation blew up on 20 June
- Reduced vertical levels from 125 to 110

 Two simulations, no spin up grids during period
- We are offering this dataset to Deepwave PIs
 3 hourly output
 - 1.4 ТВ

SI Averaged EF_z Time Series

SI Flights ISI Flights Combination

NOGW Fluxes?

NOGW EF_z Time Series

30-km Time Averaged EF_z

Period Summary

- The field project occurred over a distinct wind speed and energy flux maximum
- 9 of 21 orographic cases were deep cases
- EF_z and MF_x generally decrease through the troposphere, stratosphere
- Storms that force big orographic events are also distinct GW emitters
- EF_z maximized over SI
- Latitudinal gradient in EF_z

Case Simulations/Comparison

WPS Domain Configuration

- 150 vertical levels, 80 Pa top, coarsest vertical resolution: 500 m
- 5-km damping layer

EF_z "Towers" (1 W m² Isosurface)

MF_x "Towers" (-0.03 N m² Isosurface)

SI Average U, EF, Profiles

SI Average U, EF, Profiles

SI Average U, EF, Profiles

SI Average U, MF_x Profiles

Horizontal Propagation

Case Summary

- RF04 exhibited deep flux towers while RF09 did not
- EF_z exhibits a clear dependence on wind speed
- MF_x is not generally constant with height
 - Strongly decreases in mid-troposphere
 - Decreases above 17 km in both cases
 - Regions where MF_x is constant with strong wind shear
- Mountain waves do propagate upstream
- Transience in leg averaged EF_z observed in simulations

Future Work

1. Finish diagnostic method work

2. Further investigate propagation and dissipation below 50 km

3. Investigate propagation transience in both observations and simulations

E-P Relation at 12 km

RF04

RF09

 $EF_z = -\overline{\mathbf{U}} \cdot \mathbf{MF}$

$$p'w' = -\left(\overline{U}\hat{i} + \overline{V}\hat{j}\right) \cdot \overline{\rho}\left(u'w'\hat{i} + v'w'\hat{j}\right)$$

Extra: SI T' Variance @ 30 km

Extra: Long Run Vertical Resolution

First Half

Second Half

Worst vertical resolution: 650 m

Downgoing Waves? Transience?

RF04

21 Point Spatial Smoother

RF04

21 Point Smoother

RF09

Extra: 30-km Temperature Variance

4-km SI Average Winds

SI Averaged EF,

SI Averaged MF_x Time Series

14 June 2014 (RF04)

4-km Winds

Init: 2014-06-13_18:00:00 Valid: 2014-06-13_18:00:00

Wind Speed (m s-1) Pressure (hPa) at 4.000000189989805 km Wind (m/s) at 4.00000189989805 km

www.vapor.ucar.edu