Characterizing Uncertainty in Measurements of Vertical Wind

An Evaluation Focused on DEEPWAVE

Al Cooper

NCAR / RAF

DEEPWAVE Workshop Short Presentation 23 Oct 2014

MEASURING WIND FROM AN AIRCRAFT

How wind is measured:

A Key Complication

A 3-angle rotation is required to transform relative wind and ground motion to the same axes.

- Measurements required are pitch, roll, and heading.
- For vertical wind, the crucial measurement is pitch.
- For horizontal wind, the crucial measurement is heading.
- For relative wind, the crucial measurements are angle of attack and sideslip.

THE BASIC EQUATION

$$w \simeq V(\alpha - \theta) + w_p$$

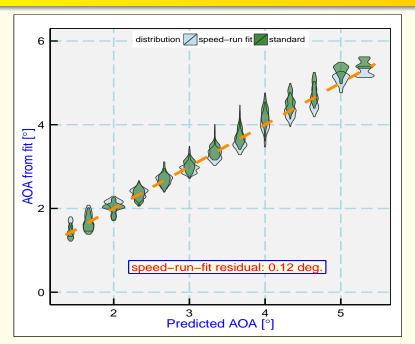
where V is true airspeed, α angle of attack, θ pitch, and w_p the upward motion of the aircraft.

NEEDED MEASUREMENTS:

Required measurements are then:

- true airspeed, from dynamic pressure and (T, p)
- angle of attack, from the radome pressure distribution
- pitch, from the IRU
- vertical motion of the aircraft, from GPS

LARGEST CONTRIBUTORS TO UNCERTAINTY:


FOR VERTICAL WIND?

- PITCH! Measurement depends on initial alignment of the IRU.
 - IRU specs are $\pm 0.05^{\circ} \Rightarrow \delta W \simeq V \delta \phi \simeq 0.2 \, \text{m/s}$ at 225 m/s
 - Not just a constant bias; changes during the flight
- Angle of attack: Easier to control via calibration

FOR HORIZONTAL WIND:

- HEADING.
- Sideslip, esp. the offset in sideslip
- True airspeed, dependent on dynamic pressure

ANGLE OF ATTACK: GOOD REPRESENTATION

SUMMARY TABLE FOR VERTICAL WIND

#	measure- ment	bias	random error	δw bias m s $^{-1}$	δw , random
1	radome ADIFR	0.07 hPa	0.002 hPa	-	_
2	AOA: fit	0.03°	0.001°	0.12	0.04
3	sideslip	0.07 hPa	0.002 hPa	_	
4	dynamic pressure QCF	0.34 hPa	0.01 hPa	<0.02	0.001
5	pitch	0.05°	0.02°	0.19	0.08
6	GV vertical velocity	0.03 m/s	<0.03 m/s	0.03	<0.03
7	GV u, v motion	0.03 m/s	<0.03 m/s	-	_
8	pressure PSF	0.10 hPa	0.001 hPa	_	
9	temperature ATX	0.3°	0.1°C	_	_

CONCLUSIONS RE VERTICAL WIND

- Estimated σ_w (standard uncertainty) is about $0.2 \,\mathrm{m\,s^{-1}}$.
- 2 Pitch is the primary cause of uncertainty in w:
 - (a) uncorrected, responsible for about $0.2 \,\mathrm{m\,s^{-1}}$ uncertainty.
 - (b) for specific flight periods, partial compensation is provided by calibration of angle of attack.
- New angle-of-attack sensitivity coefficients determined:
 - (a) contribute only about $0.1\,\mathrm{m\,s^{-1}}$ uncertainty to σ_w .
 - (b) partially compensate for an offset in pitch
- Other measurements make negligible contributions to uncertainty:
 - (a) pressure measurements on the radome
 - (b) dynamic pressure
 - (c) Earth-relative motion of the aircraft including vertical
 - (d) ambient pressure and temperature