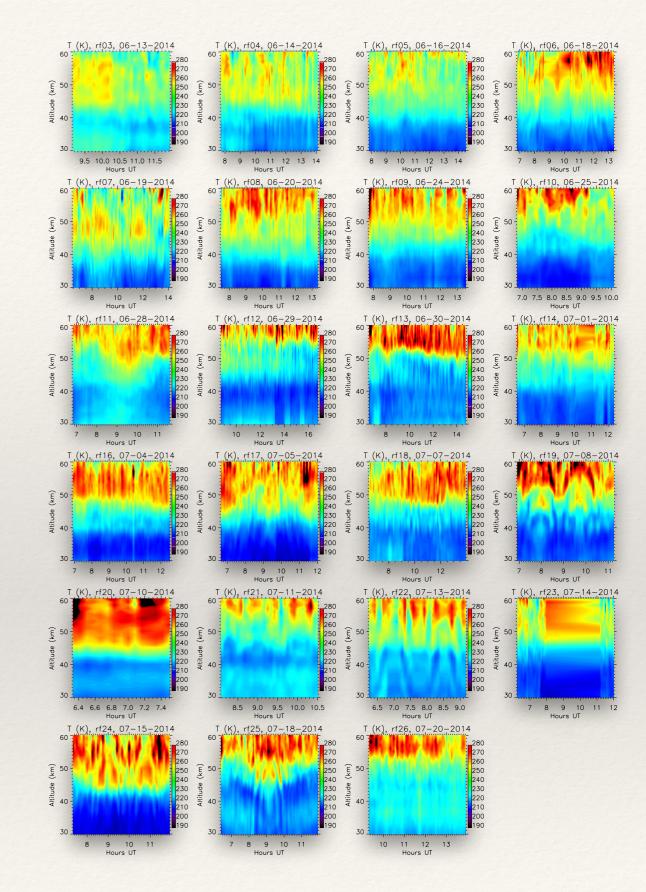
DEEPWAVE meeting, May 2015

GV Rayleigh Lidar Data Quality Report


Bifford P. Williams, GATS, Inc. Lidar instrument and data POC, <u>b.p.williams@gats-inc.com</u>

GATS Lidar Team: **Dave Fritts:** PI, dave@gats-inc.com **Katrina Bossert:** grad. student, operations, science, analysis **Tyler Mixa:** grad student, operations

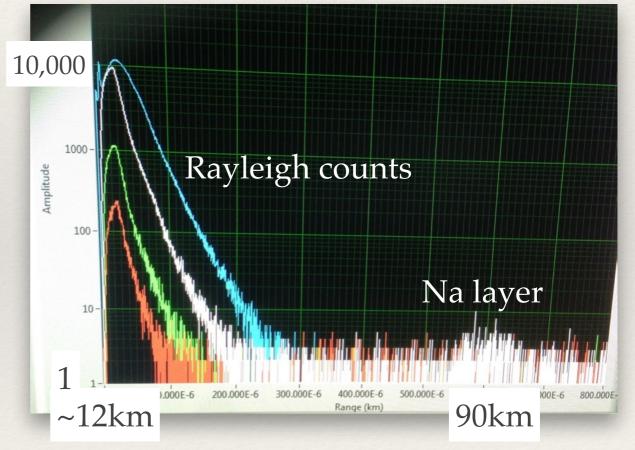
DEEPWAVE Meeting May 2015

Rayleigh Lidar Data Set Overview

- Uses Rayleigh scatter from molecules (N₂, O₂, etc.) to calculate the change in density with height and infer temperature
- * The Rayleigh lidar operated on 23 flights
 - rf01: large viewport not installed
 - rf02: loose connection in receiver
 - rf03 f14: good data
 - * rf15 daytime flight, no lidar data
 - * rf16 to rf26: good data
- * Coverage: 32° in latitude, 40° in longitude
 - * Latitude: 31.2S to 63.4S
 - * Longitude: 144.4E to 184.2
- * 130 hours of lidar operation
 - lower signal data to be uploaded later

Rayleigh Lidar Instrument Description

- * New facility instrument built at GATS, Inc. for the GV
- Racks: two standard GV instrument racks in the L1 and L2 position (along with Na lidar)
- * Laser: diode-pumped Nd:YLF Photonics DS20-351
 - * 5W at a 351nm wavelength, strong Rayleigh scatter in UV
 - * 1 kHz pulse repetition rate
 - * Small, robust and power efficient
 - * No issues throughout the 6-week campaign.
- * Transmitted beam: expanded to 20mm diameter, 0.4mrad
 - * eye-safe at the aircraft exit for overflying aircraft
- * **Telescope:** 305mm diameter f/4 Newtonian
- * Fiber-coupled receiver:
 - * 50% efficiency, low noise photomultiplier tube
 - * 0.5nm FWHM interference filter
- * Returned signal profiles:
 - * Raw: 1 sec time and 37.5m altitude resolution
 - * **Temperature:** Bin to 1min, 3km typ.



Data Collection and Processing

* Discriminate data:

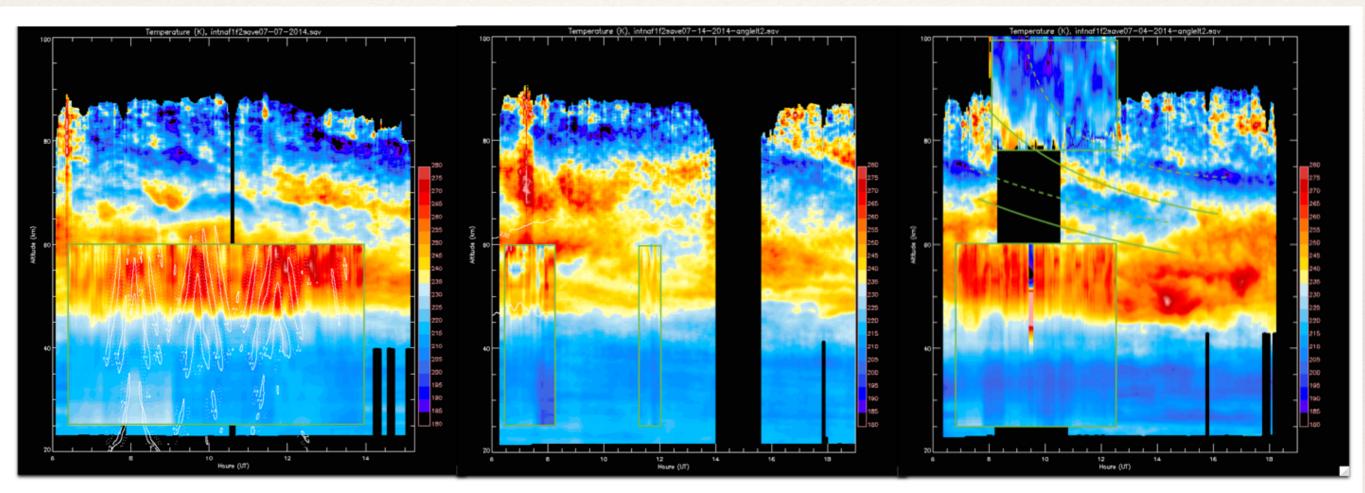
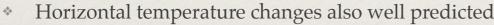
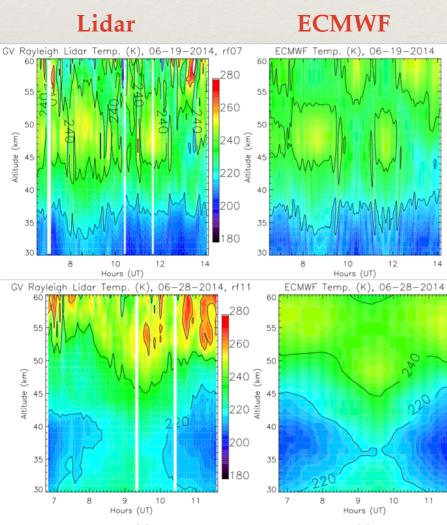
- * Turns, maneuvers (> 1.5° zenith angle)
- * Low signal (<50% nominal)
- * Variable signal (>30% profile-to-profile changes)
- Calculate relative atmospheric density profile from lidar backscatter profile
 - * correct for airplane altitude, attitude, sky and detector background noise, and $1/\,r^2$
 - * Assume no aerosol scatter -> lower bound 20-30km
- * Integrate the density profile down from an assumed top starting temperature to obtain a temperature profile
- * Start temperature: ECMWF model temperature at 71km interpolated to the aircraft time and position.
- * Affect of errors in assumed start temperature:
 - fall off as 1/density, ~ 2x every 5km
 - * 10K error at 71km > ~1K error at 50km
- * Random error from photon statistics (5 min, 3km integration)
 - * 60km: temperature error is ~5K.
 - * 40km: temperature error is ~1K

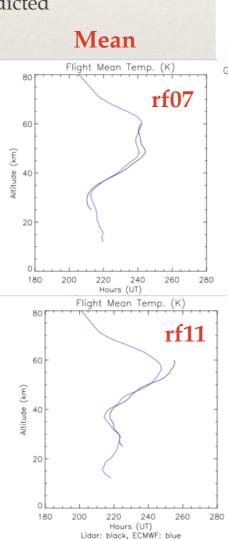
Raw photon count profiles: 1 sec, 37.5m resolution

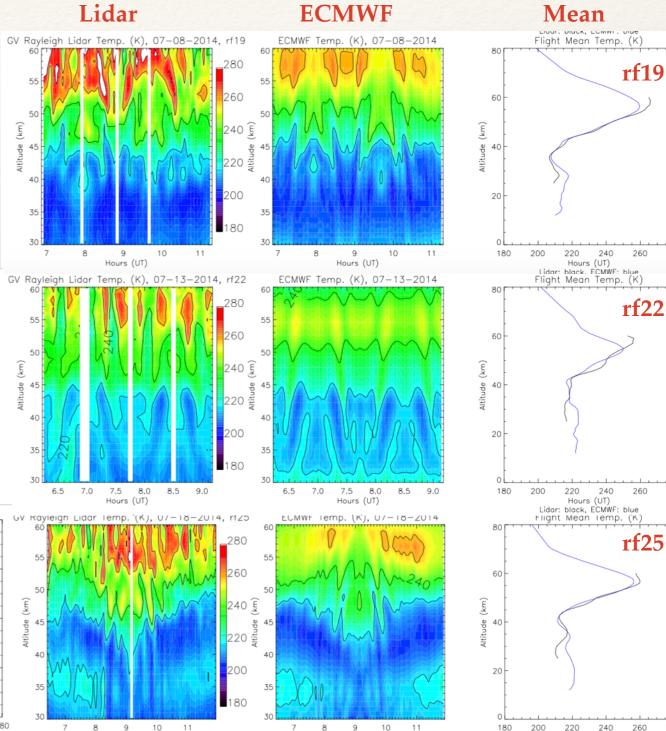
Validation: Comparison with Lauder Rayleigh Lidar

rf18

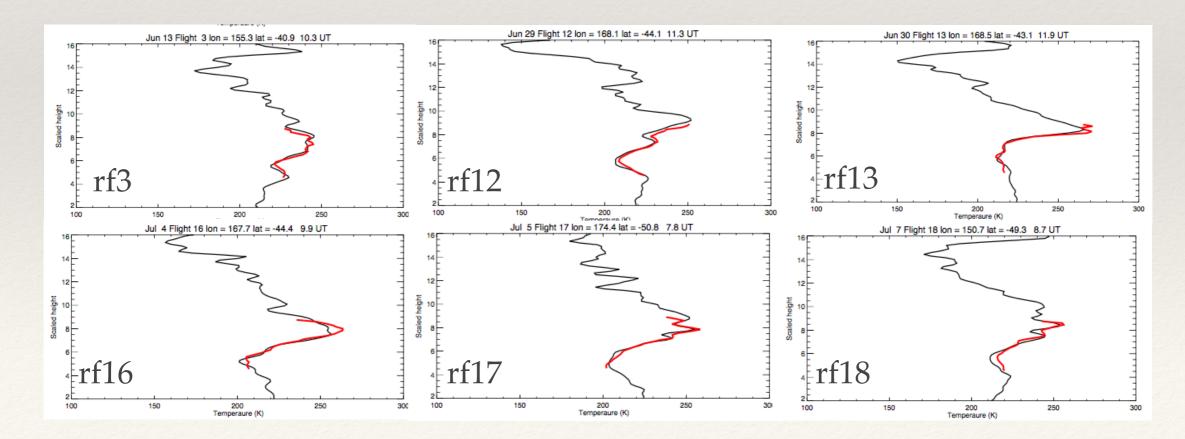
rf16


Figure 2: Rayleigh lidar comparison: GV (inside green boxes) vs ground-based (Lauder): left: rf18, middle: rf23, right: rf16.


Validation: Comparison with ECMWF

- * ECMWF temperatures interpolated to GV time, latitude, longitude
- * Mean temperatures very similar from 35-55km
- * ECMWF sometimes warmer at 30km and cooler at 60km
- Medium scale waves (HWL > 50km) predicted well, both over the mountain and southern ocean


Hours (UT)

Hours (UT) black, ECMWF: blue

Hours (UT)

Validation: Comparison with SABER

- * The TIMED satellite yawed on 08 July 2014
- * 6-7 swaths/day rf3-rf19, 3-4 swaths/day rf20-rf26
- * Flights with SABER overpasses within 1 hour and 200km horizontal
 - rf3-rf19, rf23, rf25
- * Comparison quite good except lidar sometimes hotter at 60km
 - * Assumed start temperature too high or noise too high at top edge? Will seed with SABER temperatures to check
- * SABER picks up the persistent layered structures and large vertical gradients seen in the aircraft and Lauder lidar

Data Format

* filename: netCDF file for each flight

* aircraft.NSF_NCAR_GV_Rayleigh_Lidar.YYYMMDDHHmm.Temperature_rf[FlightNumber]_[VerticalResolution]_ [TimeResolution].nc

* example: aircraft.NSF_NCAR_GV_Rayleigh_Lidar.201406130910.Temperature_rf03_3km_5min.nc

* netCDF Global Attributes:

"Title" (string), "Month" (int), "DayOfMonth" (int), "Year" (int), "NumTimes" (int), "NumAlt" (int)
netCDF Variables:

* Hour [Hours UT] 1D float array (NumTimes): Mean time for each measurement

* Altitude [km ASL] 1D float array (NumAlt): Altitudes for temperature profile typically at 30-60km at 1km separation. See filename for actual vertical resolution (typically 1 or 3km) of measurement.

* Latitude [Degrees North] 1D float array (NumTimes): Mean aircraft latitude for each measurement

* Longitude [Degrees East] 1D float array (NumTimes): Mean aircraft longitude for each measurement

* GValt [km ASL] 1D float array (NumTimes): Mean aircraft altitude for each measurement

* Temperature, [Degrees (K)] 2D float array (NumTimes x NumAlt)

* TempErr [Degrees (K)] 2D float array (NumTimes x NumAlt): Random error in temperature (photon noise)

* Variable Attributes: Each variable has two attributes: "long_name" (string) and "units" (string).

* example IDL procedure provided: readRayleighLidarNetcdf.pro

* Pro readRayleighLidarNetcdf, file, title, numt, numz, month, day, year, hour, z, gvlat, gvlon, gvalt, temperature, temperr

* inputs: file= path + filename, outputs: the rest

Data Notes and Conclusions

- * Wave structures and temperature mean profile and gradients corroborated by multiple measurements:
 - * Consistent in multiple passes over same area by aircraft
 - * Large-scale temperature gradients present in SABER, ECMWF, and Lauder lidar
 - * Most medium scale waves predicted by ECMWF, , especially their location and phase structure
- * Most of the missing data is due to aircraft turns or descents to lower altitudes, rather than instrument issues
- * Temperatures from ~22km to 30km can be produced on request
- * Temperature calibration and error levels very good in middle of profiles (35-50km)
- * Lidar sometimes hotter than SABER and ECMWF 50-60km
 - * Effect of assumed start temperature
 - * Random error from lower signal and higher relative background
- * Below 30km (sometimes 35km), possible issues with:
 - * Aerosols (NZ stratosphere should be cleaner than normal)
 - * Beam/telescope alignment errors, especially during after aircraft motion (turns/turbulence)
- * rf12 (29 June 2014) may have aerosol contamination 30-35km from 13-17UT
- * rf20 (10 July 2014) needs work. 2nd half of dataset (not shown) has low signal
- * Need to add in other temperature datasets: radiosondes, MTP, dropsondes, etc.