Mesospheric GW Activity During DEEPWAVE 2014

MLT Imaging Summary:

- 20 useable nights (14 of 26 RF nights).
- Many exhibit GW breaking with broad range of scale-sizes in the horizontal and vertical.
- Large momentum fluxes associated with GW events (FPI winds).
- Frequent complex vertical structures associated with GW event.
- Evidence of dynamic coupling between mesosphere (~100 km) and the thermosphere (~250 km) in the form of secondary GW's – 2-3 nights.

Useable nights during Deepwave 6 June – 20 July				
Mt John/Lauder 20 nights (45%) 6 19				
Lauder	17 nights (38%)	11	17	
RF nights	14 nights (54%)	5	8	
RF 1 4 6 7 10 11 13 14 15 16 17 18 24 25 26				
RF 2 5 8 12 23				
RF 3 4 9 19 20 21 22				

21 June 2014 Breaking mountain waves

OH: λ_h = 98 km I/I₀ = 8% O₂: λ_h = 108 km I/I₀ = 16%

Using OH & O(¹S) FPI winds: λ_{7} = 15-18 km (N=0.025 s⁻²)

OH: $F_m = 150 - 300 \text{ m}^2\text{s}^{-2}$ O₂: $F_m = 40 - 60 \text{ m}^2\text{s}^{-2}$

4

21 June 2014

Lauder: $c_{obs} = 2.7 \pm 0.8 \text{ ms}^{-1}$ $\lambda_h = 48 \text{ km}$ $I/I_0 = 8-10\%$

OH layer ~82 km – lower than nominal altitude.

SABER overpass at 12:19UT (range 225 km) OH emission and temperature profiles \longrightarrow

21 June 2014 (cont.) Concentric Gravity Waves over South Island

OH/O₂ phase: $\lambda_z = 56$ km. Upward propagating.

Observed at MJ and Lauder

OH: $\lambda_h = 98.7 \pm 4.7 \text{ km}$ $v_{obs} = 48.0 \pm 6.8 \text{ ms}^{-1}$ $I/I_0 = 1-2\% \text{ Fm} = 10-20 \text{ m}^2\text{s}^{-2}$

O₂: $\lambda_h = 107.8 \pm 12.6 \text{ km}$ $v_{obs} = 52.4 \pm 3.2 \text{ ms}^{-1}$ $I/I_0 = 1-2\%$ Fm = 15 m²s⁻²

30 May 2014 Large-scale standing mountain wave breaking

OH 80-85 km Na 90 km Small-scale OH waves: $\lambda_h = 20 \pm 2 \text{ km} |/I_0 = 3-5\%$ Large-scale OH waves: $\lambda_h = 51 \pm 2 \text{ km} |/I_0 = 3-17\%$ $F_E = 15 - 45 \text{ Wm}^{-2} (\lambda_z = 13 \text{ km}, \text{N}=0.025 \text{ s}^{-2})$ $F_M = 55 - 180 \text{ m}^2\text{s}^{-2}$

O₂ 94 km O(¹S) 96 km Large-scale O(¹S) waves: $\lambda_h = 43 \pm 4$ km I/I₀ = 3-18% F_E = 5 - 80 Wm⁻² F_M = 10 - 345 m²s⁻²

30 May 2014

Evidence of dynamic coupling between the mesosphere ~100 km and thermosphere ~250 km

GW's in 630.0 nm emission in the thermosphere. Altitude 250 km.

Propagating south-eastward.

c = $178 \pm 13 \text{ ms}^{-1}$ $\lambda_{h} = 157 \pm 8 \text{ km}$ $I/I_{0} = 2.5\%$

Secondary GW's.

Similar to event reported by Smith et al. (2013).

Jun1914

06:19:01 UT

19 June 2014 RF7

Further evidence of mountain wavebreaking with subsequent M-T coupling

O(¹D) 630.0 nm emission ~250 km altitude

O(1S) 557.7 nm 97 km

18 July 2014 RF25 Small-scale Vertical Filtering

OH:

Slow-moving mountain waves propagating SW. $Az = 235^{\circ}$

 $c = 12.6 \pm 0.5 \text{ ms}^{-1}$.

 $\lambda_{\rm h} = 49.0 \pm 4.8$ km.

OH $\lambda_z = 40 - 87$ km (depending on OH/Na layer separation) OH at 84.5 km (SABER).

5577:

Less-defined, surge-like GW's propagating northwards.

Az = 7°
c = 42.0 ± 5.2 ms⁻¹.
$$\lambda_{\rm h}$$
 = 49.8 ± 8.0 km.

18 July 2014 RF25

OH: Slow-moving mountain waves propagating SW ~13 ms⁻¹. **5577:** Large-scale GW's propagating northwards ~42 ms⁻¹.

18 July 2014 RF25

SABER overpass at 12:10UT (~1-2 hours later) Range = 222 km.

OH emission and temperature profiles

4 July 2014 RF16

←OH:

Small scale: 18 km Large scale: 62 km

5577: →

Large-scale: 99 km Small-scale: 20 km

- atop larger-scale GW's

UKMO N768L70: Divergence (x10⁻⁵s⁻¹) at 5 hPa Analysis Time: 1200:04-Jul-2014 (UTC)

UKMO N768L70: Divergence (x10⁻⁵s⁻¹) at 5 hPa Analysis Time: 0600:04-Jul-2014 (UTC)

18 June 2014 RF6

Turbulent mountain wave breaking

Small-scale 5577 wave activity is weaker and lags OH activity

OH:
$$\lambda_{h} = 42 \pm 7 \text{ km}$$

 $I/I_{0} = 10-15\%$

5577: $\lambda_h = 41 \pm 8 \text{ km}$ I/I₀ = 10-18%

18 June 2014 RF6 Turbulent mountain wave breaking

Geographical variations in GW activity - OH at Mt. John and Lauder

7 July 2014 RF18 Frontal gravity wave, Soliton-like bore disturbance

5577: v=38 ms⁻¹ FWHM=6-9 km λ_h =18 km I/I₀=14-20%

OH: v=26 ms⁻¹ FWHM=7-9 km λ_h =21 km I/I₀=12-19%

In Summary:

- 20 useable nights (14 of 26 RF nights).
- Many exhibit GW breaking with broad range of scale-sizes in the horizontal and vertical.
- Large momentum fluxes associated with GW events (FPI winds).
- Frequent complex vertical structures associated with GW event.
- Evidence of dynamic coupling between mesosphere (~100 km) and the thermosphere (~250 km) in the form of secondary GW's – 2-3 nights.

Acknowledgements:

• NIWA Lauder:

John Robinson, Ben Liley, and Duncan Holland (Lauder imager).

• University of Canterbury:

Jack Baggaley, Alan Gilmore, Pam Kilmartin, and Nigel Frost (Mt John imager)

• University of Washington:

Gonzalo Hernandez and Michael McCarthy (FPI wind & temperature data).

Steve Smith Boston University smsm@bu.edu