DEEPWAVE Mission overview DLR

Markus Rapp & Andreas Dörnbrack on behalf of the DLR-IPA-team

DLR/German Aerospace Center IPA/Institute of Atmospheric Physics

Scientific Aims

Further advances are needed in quantifying:

- GW sources
- GW propagation to the middle atmosphere
- o GW dissipation
- $\circ~$ GW mean flow interaction
- GW parameterizations in numerical models

BMBF Research Initiative: ROMIC 2014 -2017

DFG Research Group: MSGwaves 2014-2020

Kim et al., 2003

GW-LCYCLE

ROMIC-cooperative project: DLR, KIT, FZJ, IAP

GW-research at DLR: investigating internal gravity waves by combining airborne & ground based observation with modelling

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

ROMIC - Field Campaigns

(1) GW-LCYCLE 1

- 2 14 December 2013, Kiruna, Sweden
- DLR Falcon, radiosondes, ground based

(2) DEEPWAVE (NSF, DLR contribution)

- total period: 6 June 22 July 2014, New Zealand
- DLR Falcon, radiosondes, ground based lidar

(3) POLSTRACC/GW-LCYCLE 2

- winter 2015/2016, Kiruna, Sweden
- coordinated flights of HALO and Falcon
- simultaneous 3 hourly radiosonde launches along a West-East section from Andøya (N), Esrange (S) to Sodankylä (FIN)
- ground-based observations at ALOMAR (radars, lidars), Esrange (lidar, radar), and Sodankylä (lidars)

Deep propagation of internal gravity waves above New Zealand

German-Austrian contributions to DEEPWAVE-NZ

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Photo: N. Kaifler

Horizontal average of horizontal wind over the South Island/NZ

ECMWF T1279/L137 operational analyses (6 h) and 1 hourly high-resolution IFS predictions

Fritts et al., submitted to BAMS, 2015

Falcon Research Flights

13 research flights in New Zealand, 10 coordinated with NCAR GV

Flight No	IOP	NSF/NCAR GV	Date	Objective	
RF-F01, RF- F02	9	sequential Falcon and GV30flightsJuneRF12 and RF131 July		GW event under transient forcing	
RF-F03		no	2 July	tropopause fold	
RF-F04, RF- F05	10	Falcon flights before and during RF16	4 July	GW event under WSW flow	
RF-F06	10	RF20	10 July	intercomparison	
RF-F07, RF- F08	13	Falcon flights before and during RF21	11 July	GW event under strong NW winds	
RF-F09, RF- F10	13	Falcon flights after RF22	12 July 13 July	GW wave event with locally varying responses	
RF-F11		no	14 July	volcanoe	
RF-F12	15	no	17 July	critical level flow	
RF-F13	16	Falcon flight after RF26	20 July	GWs in SW flow	

DLR Falcon Research Flights

[km]

DLR Falcon measurements

DLR Falcon Research Flights

FF04 (4 July 2014)

(analyzed by M. Bramberger, T. Portele, A. Dörnbrack following Smith et al., 2008)

Flight 20140704a2 Leg1

DLR Falcon Research Flights FF04 (4 July 2014)

Eliassen & Palm flux relationship

(steady, small-amplitude, non-dissipative flow)

 $EF = -U \cdot MF$

Remarks:

Slope <1: non-linearities, unsteadiness, other errors

R2 less than in Smith et al. (2008)

Intercept larger than In S08; no dGPS yet; use of Cartesian wind components

much poorer statistics than S08

Momentum flux MF_u

Radiosondes from Lauder (45 S, 169 E)

(analyzed by S. Gisinger)

98 soundings in total

mean height reached: 31.1 km maximum height reached: 36.6 km

ΙΟΡ	# sondes	IOP	# sonde s	
3	9	11	-	
4	4	12	1	
5	1	13	19	
6	5 (+1 NIWA)	14	1	
7	-	15	6	
8	12 (+1 NIWA)	16	4	
9	15	GB21 (no aircraft meas.)	5	
10	13	Lidar inter- comparison and tests	3	

mean gravity wave activity (velocity perturbations)

$$\left\langle \sqrt{\langle u'^2 \rangle_z + \langle v'^2 \rangle_z} \right\rangle_{\rm RS}$$

troposphere: 1.5 to 7 km altitude stratosphere: 13 to 24 km altitude

IOP 9

N² from soundings (profiles are shifted on the x-axis by 4 per hour time difference of the soundings) Lauder IOP9 06/28/2014 23:36 - 06/30/2014 20:35

for anticyclonic conditions the thermal tropopause is higher and sharper (tropospheric inversion layer TIL, pronounced peak in N²) than for cyclonic conditions (cf. Wirth 2003, JAS)

IOP 10

N² from soundings (profiles are shifted on the x-axis by 4 per hour time difference of the soundings) Lauder IOP10 07/3/2014 23:35 - 07/4/2014 23:34

for anticyclonic conditions the thermal tropopause is higher and sharper (tropospheric inversion layer TIL, pronounced peak in N²) than for cyclonic conditions (cf. Wirth 2003, JAS)

IOP 9 mean rotary spectra (FFT of u+iv)

IOP 10 mean rotary spectra (FFT of u+iv)

Ratio of upward and downward propagation from rotary spectra

 $R = \frac{\overline{(\text{power x m})_{up}}}{\overline{(\text{power x m})_{up}}}$

 $\overline{(\text{power x m})_{up}} + \overline{(\text{power x m})_{down}}$

R > 0.6 significant upward energy propagation, R < 0.4 significant downward energy propagation

Isolation of single wave packages using wavelet analysis

perturbation profiles u' and v' \rightarrow wavelet spectrum \rightarrow identify wave packages \rightarrow reconstruct u', v', T' for individual packages

total # 806 packages

Stokes analysis of wave packages

period /h

Percentage of upward propagating wave packages

ΙΟΡ	3	4	6	8	9	10	13	15	16	GB21
up %	81	78	60	79	81	75	75	62	86	63

dominant horizontal propagation direction stratosphere (13 – 24 km altitude)

- using Stokes analysis (180° ambiguity)
- phase shift between temperature perturbation and hz. velocity perturbation in propagation direction

 \rightarrow dominant horizontal propagation direction is in a westward direction

dominant horizontal propagation direction stratosphere (13 – 24 km altitude)

- using Stokes analysis (180° ambiguity)
- phase shift between temperature perturbation and hz. velocity perturbation in propagation direction

GW kinetic energy of all soundings in a segment weighted with the total GW kinetic energy of all soundings

(cf. Vincent et al, 1997)

DLR-Lidar observations at Lauder (B. Kaifler, N. Kaifler, B. Ehard)

DLR-Lidar Operation and dataset

Relation to DEEPWAVE activities

Adapted from Fritts et al., BAMS

Date 2014	IOP	RF	FF (Falcon)	GB-IOP	Lidar	Radio- sonden
19 June	IOP06	RF07		GB09	✓	\checkmark
21-23 June				GB10,11,12	\checkmark	
30 June – 1 July	IOP09	RF13, RF14	F01, F02		\checkmark	\checkmark
4 July	IOP10	RF16	F04	GB15	\checkmark	\checkmark
7 July	IOP12	RF18			\checkmark	\checkmark
10 July	IOP13	RF20	F06	GB16	\checkmark	\checkmark
14 July	IOP14	RF23	F11	GB17	\checkmark	\checkmark
16 July	IOP15		F12	GB18	\checkmark	\checkmark
17 July				GB19	\checkmark	\checkmark
18 July	IOP16	RF25		GB20	\checkmark	
29 July – 1 Aug				GB21	\checkmark	\checkmark

bk Deepave_V2a_6 November 2014 13:42.55

Temperature fluctuations and GWPED

GWPED due to gravity waves

Orographically excited waves?

No "deep propagation"?

Remarks

- Falcon met-data analyzed for MF& EF; consistent results with S08; improvements to be: dGPS; trajectory based coordinate system for MFdetermination
- RS data analyzed for kinetic energy, stability, up- and downward propagation, wave package analysis: wave parameters incl. propagation directions
- Lidar observations: Mean temperatures and GW disturbances analyzed in terms of GWPED; phase velocity analysis under way (see Bernd's talk)
- Not shown: WRF simulations for FFs; Data projected on Falcon legs; case studies under way

Thank you!

-

DLR