
Slide  1 

Deep Spatial Ray Modeling of the RF22 

Gravity Wave Event 

Steve Eckermann 

Space Science Division, Naval Research Laboratory, Washington, DC, 

stephen.eckermann@nrl.navy.mil 

Jun Ma, Dave Broutman 

Computational Physics, Inc., Springfield, VA 

With thanks to: 

DEEPWAVE Instrument Teams 

NAVGEM Reanalysis Teams 

COAMPS Forecasting Team 



Slide  2 

Acknowledgements 

NRL’s DEEPWAVE research and support is/was supported by: 

• The Chief of Naval Research (CNR) through the NRL base 6.1 

and 6.2 research program 

• The Office of Naval Research (ONR) Departmental Research 

Initiative (DRI)“Predictability of Seasonal and Intraseasonal 

Oscillations.”  

• The National Science Foundation 

• The Oceanographer of the Navy through PMW-120/SPAWAR 6.4 

transition contracts 

• NASA through the Heliophysics Division SR&T and GI programs.  



Slide  3 

RF22: 13 July 2014 

• Very large amplitude waves (λh~200-300 km) forecast in the upper 

stratosphere over the South Island with odd phase orientation 

• Preceded by strong surface forcing previous night and early in day 

(sampled by DLR Falcon), which abated at flight time 

• Transient surface forcing associated with evolving frontal passage 

• Anomalously strong stratopause jet at the time 

Hypotheses to be tested by RF22 

1. Slow deep vertical propagation of mountain waves forced 12-24 hours 

earlier 

2. Nonorographic gravity waves generated by frontal passage 

3. Nonorographic waves generated in situ by stratopause jet instabilities 

4. Spurious waves incorrectly forecast by the models 
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RF22 Obs Provided Initial Answers 

RF22 Hypotheses 

1. Slow deep vertical propagation of mountain waves forced 12-24 hours 

earlier 

2. Nonorographic gravity waves generated by frontal passage 

3. Nonorographic waves generated in situ by stratopause jet instabilities 

4. Spurious waves incorrectly forecast by the models 
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What is the Origin of the Observed 

Phase Orientation? 



Slide  6 

850 hPa Surface Forcing 

12 July 0000 UTC    12 July 0600 UTC    12 July 1200 UTC 

12 July 1800 UTC    13 July 0000 UTC    13 July 0600 UTC 

• peaks ~12-30 hours prior to RF22, much weaker 0-12 

hours before takeoff 

RF22 Takeoff 
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Spatial Ray Tracing 
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Ray Group Trajectory and 
Wavenumber Refraction 
Equations 

d/dt = differentiation following 
the wave group (ray) motion 
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Spatial Ray Tracing 
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Spatial Ray Trajectory: 12 Jul 06Z 
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Filtering by 300 hPa Winds 

12 July 0000 UTC    12 July 0600 UTC    12 July 1200 UTC 

12 July 1800 UTC    13 July 0000 UTC    13 July 0600 UTC 

• Directional critical levels up to 1200 UTC filters waves 

• After 1200 UTC weak (but transmitting) flow 
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RF 22 Zonal Winds:  13 July 0600Z 

For RF22 and RF23 NAVGEM MLT 

reanalysis over South Island yields: 

1. weakening or reversal to mean 

easterlies  

2. Strong semidiurnal tides 

MLT MW observations suggest 

westerlies persist to ~90 km 

Untuned NGWD with large phase 

speeds may be responsible 

Limited radar observations suggest 

semidiurnal tides ~10 ms-1 

amplitude in winter MLT over New 

Zealand (Stening et al. JASTP 

1995) 

Really want to compare to 

Kingston meteor radar winds 
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MERRA v. NAVGEM for RF22 

0.3 hPa: 13 July 2014 0600 UTC 
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0.3 hPa 

Strong deformed 

stratopause jet over 

New Zealand agrees 

well with MERRA 
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Spatial Ray Trajectory: 12 Jul 18Z 
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Lateral Refraction: 12 Jul 18Z 



Slide  15 

Phase Orientation Change in Lower 

Stratosphere 
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Strong Latitudinal Shear in 

Stratosphere 
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Propagation Times 

U~20 m s-1   N=0.02 s-1 

kh=2π/(250 km) 

cgz = 0.5 m s-1 

Time to propagate to 10 hPa 

(Δz~30 km) 

tprop = Δz/cgz~16 hours 

So a 250 km mountain wave 

spends a lot of time 

propagating through the 

troposphere and lower 

stratosphere  
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Lateral Refraction 

𝒌 = (𝑘, 𝑙, 𝑚) 
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Life Cycle of RF22 Wave Event 

2014071200 2014071206 2014071212 2014071218 2014071300 2014071306 2014071312 time t 

height z 

850 hPa 

300 hPa 

100 hPa 

10 hPa 

0.1 hPa 

0.01 hPa 

0.001 hPa 

1 hPa 

RF22 

peak stratopause westerlies 

surface orographic forcing 

directional critical levels 

Strong Latitudinal Shear (dU/dy<0) 

l > 0 

l < 0 
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Summary 

• We have provided a viable hypothesis for the 

unexplained phase structure of the large-amplitude 

RF22 mountain wave in terms of lateral refraction 

• Other hypotheses (e.g., three dimensionality) 

remain to be tested but have weaknesses (e.g., 

South Island is not 3D at 200-300 km scales) 

• If this theory holds up, may be the first ever 

definitive observational proof of lateral shear 

refracting a gravity wave: wider impacts (e.g. 

“remote recoil” drag theories) 
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Wind Profiles over South Island 
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Spatial Ray Trajectory: 12 Jul 12Z 


